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IMAGE UNDERSTAND ING AND INFORMAT ION EXTRACTION

RESEARCH SUMMARY

This is the final report of our research in Image Unde rstanding and

Information Extraction for the period 1 November 1975 to 31 October 1976.

The objective of this research is to ach i eve better understanding of Image

structure and to improve the capability of image data processing systems to

extract information from imagery and to convey that information in a useful

form. The resul ts of this research are expected to provide the basis for

technology developmen t relative to military applications of machine extraction

of informa tion from aircraft and satellite imagery .

Our research projects can be categorized into six rather heavily over-

lappin g areas. Image Segmentation , i mage At t ributes , Image Structure , Image

Recognition Techniques , Preprocessing and Appl i cations. The relationships A

and interactions among these categories is suggested by Figure 1. After the

sensor collec ts the image da ta , the preprocessor may either compress it for

storage or transmission or it may attempt to put the data into a form more

sui table for analysis. Image segmentation may simply invo l ve locating objects

in the image or , for complex scenes , determination of characteristically dif—

feren t regions may be required . Each of the objects or regions is categorized

by the classifi er wh i ch may use either classica l decislon—th~ore t ic methods

or some of the more recently developed syntactic methods, In lin guistic

terminolo gy, the regions (objects) are primitives , and the classifier finds

attrib utes for these primitives. Finally, the structural analyzer attempts

to determ ine the spat ia l , spectra l , and/or tempora l relationships among the

classified primitives. In some respects , this Is where rea l “image under—

standing” is developed.

2
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Our accomp lishments ove r the course of the yea r have been recorded i n

our progress reports. Here we shall summarize the highligh ts , with emphasis

on res ults ach ieved during the f inal quar ter of the period.

• IMAGE SEGMENTAT ION — We repor ted earl ier in the year s tud ie s in wh i ch

the properties of stra i ght edges encountered in digi tal image ry were cha racter-

i zed. Techniques for recognizing and measuring the distance between real-life

stra i ght edges were investigated ,

Considerable progress has been seen in segmentation of imagery by cluster-

ing methods. Yoo and Huang ha.’e pursued this approach throughout the year,

and a summary of their work, wi th app l ica t ion to images contai n ing a tank and

two aircraf t, is i ncluded in this report.

The work of Can ton and Mitchell concerning texture has now evolved from

the study of image attributes to the development of techn i ques for Image seg-

mentation using texture and gray l eve l features. Their resul ts , disc ussed in

this repor t, offer the potential of a very fast method wh i ch might be imple—

mented either digitally , opt cal ly, or wi th CCD devices.

IMAGE ATTR I BUTES - Through the year we reported two studies in this

category which are now more appropriately reportea in other Categories , an in-

dicatio n of the overlap and the high degree of interaction between these dif-

feren t aspects of image data ana l ysis. One of these stud i es on texture was

noted above. The second , i nvolving the use of Fourier descriptors of shape ,

will be discussed under Applications ,

I MAGE STRUCTURE — The thrust of our research in this area has been to use

syn tactic methods to do scene anaiysis. Tree grammars have been proved a use-

ful approach for characterizing the syntax or structure of images. Fu and Keng

have proposed and imp l emented a scheme for syntactic and semantic processing

4
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of pre—classified data. In this report they show severa l examples of the

application of their method for information extraction.

IMAGE RECOGNITION TECHNIQUES - A “superv i sed clustering” method has

been shown by Fukunaga and Short to be useful for localizing a prob l em rather

than dealing wi th a more d i fficul t g loba l prob l em. Computationally simple

yet accurate results are obtained. Potent ial app l i cat ions of the app roach

include linear classifier des i gn and density estimation .

Fu and Vu and Swain and Pfaff have investigated somewhat differen t

approaches to the utilization of context for classification . However, this

researc h has not yet progressed far enough to support definite conclus ions

concerning the pract ical u t i l i t y  of the approach.

P R E P R O C E S S I N G  - Enhancemen t of blurred images by complex cepstra l analysis

is the goal of O’Connor and Huang . They report here further work on improv—

In.~ the reconstruction of the analytic phase function of the Image. They are

also In terested in using this form of analysis for characterizing texture.

The “projection method” is an approach to image restoration wh i ch has

been investigated by Bergen and Huang . In this report they discuss the

meri ts of this me thod compa red to “singular va lue decompos it ion” and consider

some as pec ts needing further development.

APPLICATIONS — Fourier descriptors have been demonstrated to be a useful

means of describ ing the shape of a closed planar figure , and, in par t icular ,

Wallace and Wi ntz have used Fourier descriptors to encode the shapes of air-

craft. They report here very good results using this approach for aircraft

recogn i tion .

Spatial filtering has been used by Mitchell , et. al. to reduce the

5
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effects of light cloud cover in satellite imagery. Results from a computer

- si mulation and from LANDSAT data are discussed in this report. Earlier in

the year , preli minary results were reported of applying a combination of

• spatial frequency filtering and syntactic analysis for locating airports.
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IMAGE SEGMENTAT ION BY CLUSTERING

M, V. Yoo and 1. S. Huang

I. Int roduc ti on

Photographic images include many diffe rent kinds of information , some of

wh i ch may be relevan t to a viewe r ’s interests and others may attract some

other viewers depending upon objectives and interests, But whatever the

viewer ’s objectives are, the most interesting parts of images are high infor-

mation carrying contours [1—3] which usually lie between parts of images with

diff erent characteristics to human visual perception . Therefore, the segmen-

tation of images into more fundamental textura l components is the first step

in many image processing systems.

There could be two possible approaches for this purpose ; one is the “top—

to—bottom ” approach. In this way we roughly segment the image into major

textt~res and subdivide the textures irto fine r pictorial components until the

results meet the desired object i ve. The other way is the “bottom—up” approach

where the segmented major textu res are resul ts g rown from the “seed textu res”.

Each picture element is eithe r merged into the texture already growing from a

“seed” or p rovides a new “seed”. The conventional segmentations are either

one [4] or the othe r [2].

The new app roach which we p ropose in this repor t is more f lexib le because

the f inal segment is determ ined by the cl us teri ng in the fea tu re plane rather

than the original image. This approach could be either “bottom—up ” or “top—

to—bottom” depending upon whether we first assume many clusters and group them

together or initially allow major clusters and take them apart later,

II. The Image Segmentation Algorithm

The image segmentation algorithm which we propose consists of three major

steps : (1) feature pair extraction , (2) cl ustering in the feature pair joint

7
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densi ty p lane , and (3) segmentation . The algorithm is described by the flow

cha rt in Fi g. 1.

The feature pair extraction is the measurement of parameters giving max-

i mal information about the loca l properties of the images. Feature extrac-

t ion , however, has proved too difficult to allow a genera l app roach. Never-

thel ess , the ext rac t ion of s igni f ica nt fea tures in a reasonably sim p le form

is the most i mportant step among the three.

The clus tering of features in the feature pair joint density plane de-

pends hi ghly on the fea tures ext rac ted , and the better the features chosen , the

easier the clustering.

The final step, segmentation , is the back transformation from clusters

i n the feature plane to the segmented i mage,

Some detailed descriptions about the three major steps of the algorithm

were included in the previous report [5] and we will discuss new aspects here,

A. The Feature Pair Extraction

Interest ing feature pairs should be chosen so as to give maxima l infor-

matio n about the local textural properties in ~ reasonably simple form to

imp lement on a d ig i ta l  computer.

Statistica l and structura l properties are the most commonly used , The

local sample mean, l ocal semple standard devia tion , and the local minim um and

:4 maximum pairs were used for this report.

The feature pa i rs are cal culated based on nonoverlapping 2x2 or over-

la pping 3x 3 l ocal windows . In the case of 2x2 nonoverlapping window the

feature pa i rs are calculated based on the four grey l evels at (x ,y), (x,y+l),

(x+l ,y), and (x+l ,y+l) and the four picture points are represented by the

calcula ted feature pairs. The same operations are performed in the next

nonoverlapping window and we scan this window horizontally and vertically

8
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until the whole image plane is covered. For 3x 3 window case the pixel (x,y)

is represented by the feature pa i rs calculated based on the grey l evel at

(x ,y) and the grey levels at the eight surround i ng pixels.

The calc ulated feature pa i rs can be any non—negative va l ues and to intro-

duce the feature plane based on the extracted feature pair the features need

to be normalized and quantized in appropriate levels. The features are nor-

malized such that the maximum va l ue of features is 61+ and the feature is

uniformly quantized into 64 l evels. By counting pixels which have a parti-

cular feature pai r we can cal culate the joint density of each feature pair.

F ig ures 2 and 5 are fea tu re p lanes based on the sample mean and samp le

standard deviation pair for the infrared (FU R) Image of a tank (Fig. 7(a)

and an aerial photograph of an airplane (Fig. 7(b)). Feature planes based on

the mean—standard deviation pair and the local m m -  l ocal max pair for a second

air plane (Fig. 7(c)) are shown in Fig, 6.

Computer line print outs such as shown in Fig. 3 include numerica l Infor—

mation about the feature planes .

B. Clustering in the Feature Pair Joint Density Plane

There are severa l different clustering algorithms [6—10] but the size of

the data set wh i ch we handle is too big to be implemented in an efficient

way. Especially since we are clustering featu res rather than the original

pic ture data and “n i ce” clusters in the feature plane do not lead to the

“nice” segments in the image plane , According to our experience the most

useful clus tering has been “eyeball clus tering ” based on the numerica l data

r ~ in the feature plane (computer print out) in conjunct i on with the correspond-

in g Gould Print.

Some textura l components are separated from others mainly based on one

feature and others are based on the other feature and some distance measures

9
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in the feature plane , which many cl ustering algorithms are based on, do not

mean much. In most cases our experiments the Gould prin t outs provide rough

information about the number of clusters . The l evels shown in Fig. 4 are the

resul t of clusterings corresponding to the feature plane in Fig. 3. All “zero”

levels in the cluster level plane denote feature points which the original

i mage does not have.

C. Segmentation

This is the back—transformation of clusters in the feature p lane onto

the textura l components in the original p icture domain. Different clusters

in the feature plane correspond to different textures in the origina l image

domain and the number of textura l components depends upon how many clusters

we allow in the feature plane . In 2x2 winow case, if the feature pair based

on the four grey levels at (x ,y), ... , (x+l ,y+l) Is represented by l evel m

in the feature plane , the same l evel m is assigned to the four pixels

(x ,y), ..., (x+l ,y+l) of the origina l image , whereas the l evel n is given to

the only pixel (x,y) when the feature pair based on the grey l evel at (x,y)

and the grey l evels at its eight nei ghbors has the l evel n for 3x3 window

case.

But the clusters in the feature plane usually are not perfect (actually

even if we achi eve the ideal clustering we cannot avoid generating noise when

some p ixels in different textural components may happen to have the same

L feature pair in the feature plane) and a lot of noise is produced when the

clus ters are back—transformed onto the image domain. Therefore, some appro—

priate noise reduct i on processes without destroying the segmented major tex-

tures are highly des i rable, The following two noise reduction processes are

applied sequentially and the results turn out to be satisfactory.

- 
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1. Purge

As we see in part (a) of Figs. 8— 13 the original segments (before

noise reduction processes are applied) which are back—transformed from

cl uster l evels are quite noisy. Some are due to imperfect clustering

and some are due to the fact that some of different textural parts may

have the same feature va l ues. But most of the noise points are ei ther

small isolated clusters or horizontally or vertically oriented narrow

strips with fairly short run length. The isola ted noise will be dis

cussed in the next section . Whether they are noise or not, it is qui te

reasonable that small narrow textural stri ps embedded in a large dif-

ferent textural component are merged into the dominant texture from the

- - texture segmentation point of view. The following operation will cl ean

up the horizontally oriented noisy strips .

Let L(x,y) be the cluster l evel corresponding to the pixel (x ,y)

and C(s)

if L (x—m ,y) L(x—n,y)

and L(x,y) ~ L(x—m,y) for some m,n C C(s)

then L(x,y) = L (x—m,y)

For vertically oriented strips

if L(x,y—m) = L(x,y+n)

r ~- and L(x,y) ~ L(x,y—m) for some m,n c C(s)

then L(x,y) = L(x,y-m)

The standa rd sizes of S are 1 , 2, 3. If there are fairly narrow parts

in the textura l segments , i t is recommended to choose smaller S,

II
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otherwise some parts of the textures may be destroyed. For Figs. 8(b)

and 9(b) S=3 was used ; S=2 was used for Figs. 10(b) and 11 (b); and

S = l  for Fi gs. 12(b) and 13(b). Even S=2 is too big for Fi g. 11 (b).

Note that the engine in the left side is connected to the body of air-

plane 2.

2. ISOLDROP

Most of the isolated noisy clusters are cleaned up by the “PURGE”

but “PURGE” may also introduce some isolated noises. Of course, there

are some fairly large clusters of noise which “PURGE” failed to clean.

We scan the m x n  window and if all the grey l evels at the boundary

of the window are the same then we replace the whole window by the grey

l evel at the boundary of the window. We used the size m = n = - 5. If the

small size of the window is chosen we cannot clean up fairly big size

of nois es but if we choose a bi g window size , noise cl usters which ar e

fairly close to each other may not be dropped . The compromise depends

upon the type image involved .

III ,  Applica tions

A useful app l ica t ion for segmented textu res is the boundary detec ti on

of the i nteresting objects in a closed form, Closed contours are i mportant

in rela t ion to codi ng or sha pe desc ri ption (pattern recognition). We p ick

up a pixel (x,y) in a particular texture (object) and look at its eight sur-

rounding pixels , If at least one of the eight pixels belongs to any other

texture we assume the pixe l (x,y) is a boundary point , But before the boun—

dary detection operation is applied there is one more thing to be considered.

If some Isola ted noisy clusters were located at boundaries between dif-

fe rent tex tu ral components , the nois e reduct ion operations “PURGE” and

“ISOLDROP” could not handle the case , The follow i ng operation precedes

12
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the boundary detection process to achieve clean boundaries . Let P be the

level of the cluster corresponding to the interesting object in the image

involved for horizontal ly  oriented noise

if L(x,y) = P

and L(x-m,y) ,& L(x,y)

L(x+n,y) ,~ L(x,y) for some m,n c C(s)

then L(x,y) = L (x—m,y)

For ver t ical ly oriented noise

if L(x,y) = P

and L(x,y—m) ,‘ L(x,y)

L(x,y+n) ~ L(x,y) for some m ,n c C(s)

then L(x,y) = L(x,y—m)

Detected boundaries for three different images are shown in Figs. 8-13 ~part

(c)) and boundaries superimposed on the corresponding original images are

shown i n part (d) of the figures .

IV. Experimental Results and Discussion

We applied the algorithm to three different images : infra red image

(tank) which has low resolution and two airplane images with moderate resol-

ution . The size of the images are 256x 256. Segmented images are displayed

by a COMTAL 8000 Seri es System. Boundary detection based on the segmented

textures guarantees the closed contours which are essential in many appli-

cations. All detected boundaries are based on the noise reduced segments

except the air plane 112 (3x3 window case). In this case we used the
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ori g inal noisy segment s beca use the noise reduced versio n messed up the small

parts near the left engine (see Fig. 11(b)). The boundaries superimposed on

the originals demonstrate how accurate Jhe algorithm segmented the original

images.
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Figure 1 The Segmentation Algorith m

15

_ _ _ _ _ _  ~ g ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



:~~~
- ‘- : : ; :

(A) 2 X 2 Window used

t / 

(B) 3 X 3 Window used

Figure 2 Feature Plane( Ta ik  )
Ver: Mean Hor: Standard deviation
Size : 64 X 64
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2 X 2 Window used .
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Figure L Levels of Clusters( Tank )
Feature ( Ver: Mean Hor: Stand . devi. )

2 X 2 Window used .
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(B) 3 X 3 Window used

Figure 5 Feature Plane( Airplane I )
Ver: Mean Hor: Standard deviation
Size : 64 X 64
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(B) Ver: Local minimum Hor: Local maximum

Figure 6 Feature Plane( Airplane 2)
Size: 64X64
3 X 3 Window used
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(a) (b)

(c)

Figure 7 Origina l Pictures .
(a) FUR tank
(b) A i rp lane 1

- (c) A i r p l ane  2
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~ c) (d)

Fi gure 8 Results using Orig ina l in Fig. 7(a), a 2*2 Window , and
the Mean and Standard Deviation Features.
(a)  Segmented image
(b) Noise reduced segments
(c) Boundary of interest ing object
(d) Boundary superimposed on origina l
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(c) (d)

Figure 9 Same as Fig. 8 except a 3x 3 Window .
(a) Segmented image
(b) Noise reduced segments
(c) Boundary of interesting object
(d) Boundary superimposed on orig inal
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Figure 10 Results using Original in Fig. 7(b), a 2*2 Window , and
the Mean and Standard Deviation Features.

• (a) Segmented image
(b) Noise reduced segments
(c) Boundary of interesting objects
(d) Boundary superimposed on original

24

— —-~~~~
, r-~~~~-•-.-.’—’,.- - .  • -  

~~~~~~~~ 
• ‘‘-

~~~~~
.- . -  • 

~

- — - —

— ~~~~~~~~~~~~~~~ — - — -j--— —~ .. • ~~~~~~~ . .• ..~~~~~ -•——-.._— — — . .-- -
~~~ . 

r’ i -



- ---- -. ..._._ ~. T T T ~~~~~ 
- - -- --

~~~~ 

.

I d

- -

p. -Y4)~~~~~~~~ , 4.44-ar~’ 
~~~~~~~~~~~~~~ • ‘-. .~~~~~~~~ ~~~~~~~~~~~ 

‘
~~~~~

-
~~

—

• I.. .

(a) (b)

1

0,

(c) (d)

Fi gure 1 1 Same as Fig. 10 except a 3*3 Window
was used .
(a) Segmented image
(b) Noise reduced scgment:
(c) Boundary of interesting objects
(d) Boundary superimposed on ori g inal
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Fi gure 12 Results using the Original in FIg. 7(c), a 3x3 Window ,
and the Mean and Standard Deviation Features.
(a) Segmented image
(b) Noise reduced segments
(c) Boundary of interesting objects
(d) Boundary superimposed on original
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(c) (d)

F ig u r e  13 Same as Fig. 12 except the Features used
are Local Mm and Local Max.

• (a) Segmented image
(b) Noise reduced segments
(c) Boundary of inte resting objects
Cd) Boundary superimposed on ori ginal
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IMAG E SEG MENTAT I ON USI NG TEXTURE AND GRAY LEVEL

S.G. Carlton and O.R. Mitchell

I . I NTRODUCTION

In our last report we described the use of image texture properties to

locate region boundaries. While results were encouraging , the inability to

obtain closed boundaries was a decided drawback, In our pursuit to produce

closed boundaries , thus segmenting the image , we developed the algorithm

described in this report. The preliminary results are encourag ing.

II . THE BASIC TEXTURE MEASURE

Severa l approaches to the use of image texture information have recently

been developed [2,3]. However , these techniques have generally been applied

to region classification following segmentation and not to the segmentation

problem i tself . In our approach to represent texture , var ious sizes of ‘oca l

extreme in the logarithm of the ima ge are summed within a window surrounding

each point.

A. Local Extrema

In the work reported here , local ex trema were foun d by combining hori-

zontal and vertica l one-dimensional operations. The one—dimensional operation

scans a line of data and assigns a poin t to be a l oca l maximum (minimum) of

size I if it is the largest (smallest) value occurring in the vicinity on the

lin e befo re the va l ues drop (rise) to an amount T below (above) this maxi mum

(riinimum) va l ue [Li]. An example is shown in Figur e 1. The loca l extrema of

size 3 and size 1 are marked. This process is equiva l en t to detecting the

extreme f 31’- .-Jin g a hysteresis smoothing operation using a smoothing of T/2.

The logarithm operation is first performed on the image prior to the

extreme c~-tect ion The use of this t~ xture measure is a crude attempt to

simulate tP ~~~ human visual systen ’s response to a texture pattern . For examp le ,
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each maxi mum in Fi gure 1 wou ld appear as a bri ght po int to a human observer

even though one of them i s below a mi n imum wh i ch would appear dark to an

observer , i.e., the loca l surround affects perceived brightness much more

than the actua l gray l evel [5).

A sample image is shown in Figure 2. This is a 256x256 8—bit black and

wh i te aerial scene of a military simula tion area in New York State. The

loca l extrema measured in the logarithm vers i on of this image are shown in

Figure 3. Three threshold va l ues are shown as three intensities in the

picture (low, med i um and high with the extra high omitted). The horizontal

and vertica l extreme have been combined .

B. Turning Texture to Gray Level

The next stage in our app roach is to count the number of each size extrema

in a window centered about each point. This results in a gray l eve l picture

representation of a texture property . For example , usin g a 40x40 window and

three thresholds , the three pictures in Figs. 4, 5 and 6 were produced . Note

that the forest region of the original has few small extreme, many medi um ex-

treme, and quite a few large extreme . The original image was also averaged

using the same 4Ox40 window to produce a fourth picture , shown in Fi gure 7,

represen ting the average gray level.

III.  SEGMENTAT I ON

We now have four pictures (or one 14—d l menslonal Image) to be used for

segmentation . Each picture elemen t is considered to be a 4—dimensional

vector. To accomp l ish segmentat ion, a starting point in each separate seg—

ment of the image is found. Th is is accomplished by fi nding loca l ex t rema

in each of the four windowed pictures of Section II . I n this operation a

point mus t be a local extrema In both the horizontal and vertica l directions

to be chosen. This preven ts the location of starting points In transitional
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areas between two regions. The starting point candidates are then compared

using a four—dimensional distance measure. Each group of similar candidates ,

based on a threshold cr iter i on , are merged to produce an average vector

representing that group, The resul t ing average vec tors form the s tarti ng

points for the segmentation . The distance measure used Indicates an approx i-

mate percen tage difference in each dimension :

4 A. -B.~
0=  E

1=1 A I+Bi+K

where A is the intens i ty of one point in the Image and B is another. This

measure is si milar to gray leve l contrast. The constant K allow s for de-

creasing the we i gh t of a dimension in a region where the tota l number of

extrema is small and , therefore the percentage difference is unreliable. For

a window size of 4Ox4O we used a K 25.

Once the final set of starting points Is determ i ned , each point In the

Image, regardless of its spatial location , is assigned to the closest start-

i ng point using the distance measure described above. This normally results

i n fairly large contiguous regions due to the nature of the earlier window-

i ng operations. Results using this technique on the Image and Intermediate

steps presen ted in Figures 2 through 7 are shown in Figures 8 and 9. FIgure

8 results when a large distance threshold criterion for similar starting

point vectors is used. The additional region shown In Figure 9 was obtained

by tightening this threshold. The major regions extracted from the origlna i

image are forest and two different grassy areas.

A si mple biproduc t of this segmentation is the regi on boundaries. A

sim ple processing procedure on the segmentation output produces the boundary

Image shown in Figure 10, These bound aries are then shown overlaid on the

ori g inal images in Figure 11 .
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IV. HIERARCHICAL SEGMENTAT I ON

In order to completely segment an image , we p ropose to fol low the above

procedure using diminishing window sizes. The firs t large window size as

described In the earlier sections will find major boundaries. The dImInishing

window sizes wIll find smaller objects wh i ch are averaged out by a large

wi ndow. However, the smaller sizes will lose the more global context obta i ned

by the larger ones and may miss some of the major boundaries.

To overcome this effec t, each major region previously extracted w ill be

subdivided separately. This prevents the proliferation of starting points

and dis tance measurements. It also introduces spat ial contex t into the seg

men tation procedure.

V. TECHNIQU E PARAMETER SENSITIVITY

There are several thresholds wh i ch must be set to make this technique

opera t ive : ext rema sizes , window sizes, and dis tance similarity criteria.

However , If the in put data is fairly homogeneous (e.g., aerial photographs

from a constant altitude) the algorithm performs well using fixed parameters.

The al gorithm is theoretically invariant to illumination leve l changes and

magnification If the window sizes used are appropriate to the size regions

to be detected.

VI. ALGORITHM IMPLEMENTAT I ON

The one—dimensional extrema detection algorithm is easily imp l emented in

a line—a t—a—time d Igital processor. The picture is presently transposed and

the process repeated to obtain the vertical extrema. It is feasible to

i mp l ement a two—dimensional version of this algorithm using CCD transversal

fil ter technology wh i ch would output extrema sequentially in real time and

el iminate the time consuming transposition .
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The smoothing operatIons described are imp lementable digitally , opti-

cal ly, or wi th CCD devices. Thus the overall segmentation system could be

Imp l emented for very fast image p rocessing rates.
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FIgure 1 Sample gray level pattern for extreme
detection. Local extrema of size 1
and size 3 are indicated.
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F ig . 2 Original image to be Fig. 3 Three levels of extrema
segmented , 256x256 8 bi ts displayed in different intensities
per point

Fi g. L4 Average low level extrema - Fig. 5 Average med I um level extreme —each point represents the total each point represents the total
number of low leve l extrema wit hin number of med i um level extreme within
a 40x40 window a 40x1i0 window centered at each point.
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Fi g. 6 Average high leve l extrema Fig. 7 Average gray l evel — each

each point represents the tota l point represents the average gray

number of high l evel extreme wit hin level within a LiOxLiO window centered

a liOxLiO window centered at each at each point

point 
- 

-

Fig. 8 Results of the segmentation
procedure wi th loose threshold
cri terion on star t ing poin ts -
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Fig . 9 Results of the segmentation Fig. 10 Image boundaries p roduced

procedure with a right crite rion from the segmentation output

on startin g point generation
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Fig. 11 Image boundaries out~aid on
the ori ginal image
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A MODEL OF AUTOMATIC INFORMAT I ON EXTRACTION
FOR IMAGE UNDERSTAND I NG

- 
K. S. Fu and J. Keng

Models of information extraction are usual ly statistica l models. Some-

times, in the implementation of these models, a men—machine Interactive pro-

cess is requ i red to improve the processed results . Todd and Baumgardner (11

applied the statistica l model which used spectral analysi s for land—use clas—

sifi cat i on of Marion County, Indiana (indianapolis area). Their resul ts re—

iden tified the problems that statistica l analysis can not be applied to a

fully satisfactory level, One of their difficulties is to distinguish high—

-~ - ways and commercial areas by computer automation . Wi th that difficulty in

mind , we have proposed a syntax—d i rected method for automatic i nformation

extraction.[2]. This method for automatic information extraction consists

of three major parts (see Fig. 1): preprocessor , syntactic analyzer , and

postprocessor.

L~reprocessor I
c!j7 

1
Syntactic Analyzer

H _ _ _ _

Lpostprocessorl

- 
- Figure 1 A model for automatic information extraction.

The preprocessor extracts primitives from an input image and transforms the

image to ~h1an guage~I sentences which are the Inputs for the syntactIc analyzer.

This process usually invo l ves a transformation operation , thresholding opera-

t ion , averag ing operation and so forth. The syntactic ana l yzer processes the

in put image by a set of gramatical rules inferred by a grammatical inference

-
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al gorithm. This process is to accept those patterns which can be generated

by the set of gramatica l rules , and reject all others, The postprocessor

sequentially executes several semantic rules . Those objects wh i ch are related,

based on semantic information , are extracted from the Image,

An example of urban deveiopment Information extraction from LANDSAT

image is given to il lus trate the details of the method and to demonstrate its

capability. First some special terms need to be defined .

A LANDSAT i mage is defined in the Euclidean space by the expression

X(i ,j,k) as

{X(i ,j,k)l 1 < I < N , I < j  < M , 1 < k  4)

(N = the number of rows of the Image)

(M = the number of colunn s of the image)

(k = the spectral band number)

The Thresholding Funct i on is a Boolean function defined as

f~ = Q(i ,j,k) if Q(i ,j,k) greater than the threshold

o if Q(i ,j,k) equa l to or smaller than the

L threshold

The Line Smoothing Process (LS) is defined in [2]. The Syntax—Directed Analy-

zer (SDA) is defined in [2]. The following is an imp l ementat i on of this model

for the extraction of info rmation based on urban development.

I. Preprocessing

Step 1 Input LANDSAT images {X(i ,j ,k), 1 < I < N, 1 < j < K ,

1 < k < 14)
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Step 2—  Transformation Process P(i ,j,ki—X( i ,j,l)+X( i ,j,2)

P(i ,J,k” )  — x (I,j,3) +X(i ,j,4)

Step 3 — Thresholding Process f~ (P(i ,j,k”))

Step 4 = Line Smoothing Process LS(f1~(P(i ,j,ki))

LS(~~ (P(i ,j,k’~’)))

2. Syntactic Analysis

HR and RR are Highway and River recognition results .

HR(I ,j,k”) — SDA(L S (f
~
(P(I ,j,k”))))

RR(i ,j,k~~) — SDA(LS(7~~(P(i , j ,k ’ ’ ) ) ) )

3. Postprocessing

Step 1 — P(i , j ,k~~) P ( I , j, k’) ® HR(I ,j,k’)

Step 2 — P( i ,j,k) — E X( P (l ,j ,k’)

EX is the execution process of the semantic information .

For comercial/industrial the semantic rule is that if
I .4

the area has over 60% of It to be concrete, then this area

Is caiied commercial/Industrial area , since the comerclal/

indus trial area has a high density of concrete buildings

and concrete storage yard.
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Step 3 = Region Growing Process

If the window {P(i+c,j+c,k) 0 < c < 3} satisfies step 3

then P(i+c ,j+c,k) is recogn i zed as commercial/industrial

area.

Step 4 = Achieving the urban development information as highway

• structures , river locat ions , and commercial/ind ustrial

expansion.

This method was imp l emented on the IBM 360/67 timesharing computer of the

Laboratory for Applications of Remote Sensing in FORTRAN. The experiments

have been conducted on different areas. Figure 2(a) is a satellite image

(96 x 96 pixels) of a section within the northwestern part of Indianapolis

area , taken in 1972, Fi gure 2(b) is the topographic map of the same area,

This map was made in 1 967. In Fig. 2(c) the intermediate output after the

— 
- preprocessing is given . Figure 2(d) is the commercial/industrial area recog—

ni-tior , result. This area is identified as the Lafayette Square Shopping

Center nea r Indianapolis. Fi gure 2(e) is the urban development information

extraction result. H, R, and C represent the highway , river , and comercial/

ind ustrial pixels , respectively. The interstate highway 65 (upper right part)

goes into the city from the northwest. Highway 465 (from north to south)

surrounds the city and highway 74 (left l ower part) goes into the city from

west. The Lafayette Square Shopping Center is located in the suburb and

close to the highway . This area Is typical of the urban development found in

many large ci ties in the Un i ted States and this urban development information

was automatically extracted by the proposed method ,

Comparin g Fig. 2(e) with the topographic map (1967) we can observe the

growth of the commercial area clearly on the northern and eastern parts of

40
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shopping center. This indicates that the automatic information extract i on

could be useful in topographic map making and updating.

Severa l large images (l92 x 192 pixels) were also processed by the same

technique 0 Figure 3(a) is the satellite image of Lafayette , Ind iana area.

• Figure 3(b) is the commercial/industrial area recognition result. Figure 3(c)

is the urban development information extraction result. Figure 3(d) is a

ci ty map of Lafayette. The commercial areas along the U.S. Highway 52 by-pass

are successfully recogn i zed. The Wabash rive r dividin g West Lafayette and

Lafayette is also recogn i zed, Another example is provided in Figures 4(a)-

(d). Figure 4(a) is a satellite i mage (l92 x 192 pixels) of the northwestern

part of Ind i anapol i s, India na (Fig. 4(b)), Figure 4(c) Is the comercial/

i ndustrial area recognition result. Figure 4(d) is the urban development

i nformation extraction result. The Lafayette Square Shopping Center and

part of the downtown area (right lower part ) are successfully extracted and

recognized.
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Figure 2(a) Satellite image of northwest part of Indianapolis ,
Indiana area (96 x 96 pixels).
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FIgure 2(b) Topographic map of same area as Fig. 2(a).
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Figure 2(c) In termediate output after preprocess
of Fig. 2(a).
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Figure 2(d) Commercial/industrial area recognition result.
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Fi g, 3(a).
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GENERALIZED CLUSTERING FOR PROBLEM LOCALIZAT I ON

- K. Fukunaga and R. D. Short

I. In troduction

In the past, applications of clustering have been limited to situations

i n wh i ch a set of data samp les is g iven wi th no information as to it s

underly ing dens i ty or class assignrilent . The clustering procedures are used

to find natural divisions within the data set and thus learn something of

the structure of the underlying density or a natural classification of the

data [l]—[5).

For this paper we would like to introduce what we feel is a new

application ~or cl ustering. In our case we assume that more is known about

the sample space than just the samples themselves. Clustering is used to

divide tt’e space into disjoint regions , mi nimizing a criterIon which takes

into account the addf t l ona J information . The resulting clusters are then

used for the processing of new data samples.

The following sections describe the techniques i nvolved in detail.

Section 2 gives us introduction to the genera l approach wi th specific examples

wh ich apply to piecew i se linea r classification and piecewise linear density

estimation . Section 3 describes in detail the algorithm for piecewise linear

classifier design. Experiments involving the two class prob l em are given

along with the results. In Section 1+ we discuss the piecewise linear dens i ty

estimation prob l ems. Again experimenta l results are presented . Finally,

the paper is concluded with a few remarks reflecting our impressions of the

genera l procedure and the supporting experimenta l results.
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2. Clus terin�j for Problem Localization

For many problems in pattern recognition the researcher is seeking to

find a globa l solution , that is a sol ution which is valid for the entire

probabil ity space. Quite often the solution can be greatly simplified If

the space Is first partitioned and the problem is solved in each local

reg ion . For example , in the class i fie r des ign prob l em the boundary between

two classes may be rather complex in the space as a whole , while if the

proper partit ionin g is chosen, li near classification in the suhspaces may

• give excellent results. So If the correct subdivision of the space is

found,a complex decision boundary may be reduced to a comparatively simple

boundary, such as a linear one, in each region .

Another problem wh i ch is easier to solve at a loca l leve l is dens i ty

estima tion . Using Taylor ’s expansion of the density function

p(x) p(x
0) 

+ Vp (z)~ (xx
~
) + O( IIx~xo II 2) (1)

Z—X

we see that l ocally p(x) can be estimated by a l inear function

p(x) c0 
+ x . (2)

If the researcher does opt for this method of solution he is Immediatel y

faced wi th the prob l em of finding the most desirable partItion i ng. The best

par t it ion ing for classif ier design may give poor results when used for

density estimation . The proper partition ing of the space wIl l also depend

on the type of c lassi f ier  or density est imate to be used in each region .

in order to find an optimum partition i ng , we propose to use the general

method of clustering with important modifications which are appropriate for C

the part icu lar problem.
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I n conventional clustering we use a criterion of the form J(x, r~),

where X is the set of N, n d imensIona l data samples to he clustered and c
is a partitioning of X [6]. Thus the only information used to perform the

clustering Is contained in the spatial coordinates of the data samp l es in

X. For this reason the term ‘unsupervised clus terin g ’ is often applied .

If the data set gives a good representation of the underlying probabil ity

density, then various cha racteristics of the density function may be stressed

in the clustering procedure. Such examples are the modal seek i ng and valley

seek ing properties of various criteria as found in the literature [2], [3] .

Unfortunately, for our proposed purpose, the information available from the

spatial coord i nate values does not supply sufficient information for mean i ng-

5 ful clustering . Therefore, we wish to introduce clustering criteria whicn

take i nto account the specific application , we have in mind for the resulting

partitioned space.

Cons ider the problem of a two class classifier design. Here we wish to

divide the space into N reg i ons. In each region we find the linear decision

boundary wh i ch best classifies the data samples in that reg ion . Since the

ultimate goa l for any classifier design is to minimize the prob ability of

error , we choose for our clustering criterion the following

J(x , F , V l,...,VH, cl,...,cM)
ii

= 
Z Pr{r.) Pr{error/V., c~ r~ (3)

i=l

where ‘iT >- + c. = 0 is the best linear decision boundary for region r1. For

a finite set X = {x 1, x2,...,xN) and a decision rule

( x t

v Tx +c. ~~ 
(14)

~ ~
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we can estimate (3) by

J(X , C, V l,...,VN, cl,...,cN)

= 
~~
. T~ Z d(x., V 1, c1 ) (5)

i ’l  x~cr 1

where

( 0 if h(x) gives a correct decision

d(x., V.,, c~) (6)
1 otherwIse.

The property which distinguishes this criterion from the more traditional

forms for cl uster i ng is that we must know aprior i the classification s of the

data set X. In this sense X can be viewed as a training set wh i ch we can

use to find an appropriate subdivision of the space Rr7 and the subsequent

li near classifiers . These results will then be used to classify unknown

samp l es.

Two rela ted problems immediately arise from using the criterion as

state in (5), wi th a conventional iterative algorithm such as is used in

I SODATA, [2]. As an example , consider the situation shown in Figure 1. If

we start with the initial regions shown in Figure 1 (A) and the resulting

classif iers, then all points in class 1 to the right of the lInear classifier

I n region 2 will be placed in region 1. Simi larly, the samples in class 2 to

the left of the linea r classifier in region 2 will be placed in region 3. The

prob l em that arises here is how to separate the points in the shaded areas

‘5 
in to their respective reg ions. This raises the second problem of how to

place a new unknown sample x into or or which classifier to be used

to classify x. Obv i ousl y, x does not have apriori informa ti on as to the

correct classi fication of x. Hence, using the new clustering criterion with

the traditiona l clustering procedures gives results which are of no rea l help.
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To correct these flaws we must somehow i nt roduce a structure or a

mathematica l form for our region boundaries which is independent of the

apriori class information . As such a boundary structure we restrict

our partitions to be linearly separable and minimize (5) over this class

of partition i ngs. In this way we can describe the boundaries between the

partitions by linear funct i ons and thus assi gn any point in R”1 to a region

without the apriori knowledge of class assignment. At the same time we

have minimized, as much as possibl; the number of misclassified samp les

from the training set.

It is i mportant to stress here that the choice of linear boundaries

is an engineering one, for computational considerations. The basic

philosophy is that we must some how restrict the class of part ltion i ngs

such tha t a new sample can be assigned to a region without apriori knowledge

of its classification . For this reason we have chosen to define a boundary

structure which can be used without such apriori knowledge. Another technique

is to restrict the class of partition i ngs such that the nearest ‘
I

ne i ghbor of x. is in the same region ~s x~. Then the new sample w ill be

placed in a reg i on according to its nearest neighbor.

Now consider the prob l em of density estimation . For this problem we

divide the space into P4 reg i ons and find the best linear estimate of p(x)

in each region. We use the mean—square—error to measure the closeness of

our estimate. The appropriate clustering criterion ~s then

J(x , 
~
, V l,...,VN, cl,...,cN)

M
= Pr(r

~
) E{~p (x)—VJ x — c1 

2/r., V ., c.) (7)
i= l

where VT x + c. is the best linea r estimate of p(x) in r. for mean-square-error.

For the finite set X = {X 1, . . ., X N~ 
we have
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.J (X , ~~, V 11...,VP42 c1P...,cP4)

~ E I~ (x~) - Vj X
j  
- c u

2 (8)
—1 xjEr~

As in the previousl y mentioned classification prob l em, we see that -

cl ustering X with the criterion in (8) requires aprior i knowledge about

the data samples in X. In this case the required Information is

or at least an estimate of this quantity. Plow , if we wish to apply the

resulting density estimate to a new sample x, we are unable to use J for

decid i ng which reg ion to p la ce x in wi thout the aprior i va l ue of p (x).

Tak i ng the same approach as in the prev ious prob lem, we again restrict

the class of partition ings to those wh ich have linearly separable partitions.

In the following sections we present in more detail the two applications

mentioned here for this new form of cluster ing . We would firs t l i ke to

re—emphas i ze that these are specific applications of a more genera l techni que

of findi ng opt imum space part i t ion ing s for the purpose of problem l ocaliza- -
•

tion . This techni que should be considered in any si tuat ion i n wh ich the

designer is faced with a prob l em that is more easily solved locally than

globally. ~-Ie w il l now give two specific examples.
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3. Piecewise Linear Classifica tion

In this section we introd uce in more detail the concept of usi ng a

mod ified clustering procedure in designing a piecewise linear classifier.

Aga i n the basic philoso phy to this approach Is to divide the space iii t~ H

regions and design a good linear classifier in each region. The regions ate

modif ied accordi ng to the cri teri on in (5) and new l i near class i fi ers are

then found for each new reg i on. The procedure is repeated until significant

improvement in the criterion ceases.

For our experiments we have chosen to divide the training set into 3

regions. The boundary structure for these partitIons is restricted to he

of the form.

J x . c r
x U  + a > 0

~~ ~
j 1 1 <

X~ c r2

t x . c r
x JU 2

+a
2~~~O~~ 

J 1 (q1
I x. c r
\ J  3

xJU .3 + a 3~~ 
0) ~ 2

t~
x
j

where the xT U. + a. — 0 form linear boundaries between two regions. I~

sample is placed into the region which rece i ves a majority vote. In the

case Tn which each region recei ves one vote, the linear boundary closest

to thc sample is found and the decision of that boundary is reversed . The

p-~rameter vec-.t(,r 1)
1 i s fou nd by

U 1 (N1 — ‘42~’I 1M 1 M
2
~

where if ~‘ - ~—— ~~ x
L 

~k x.cF -‘j k
with number of samples in rk .
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The threshold Is adjusted for otpi!aim div isior of r 1 and r2. TI~ oth,-i

Uk
’s and ak ’s are found analogously. The boundaries of (9) with (L’ s of

(10) are perpendicular to the mean—difference vectors between classes , wI,irh

were used lii ISODATA (2]. The only difference here is the introdu ction

of thresholds a r ’s. Our experimental results show that the proper se l€-ct i n ,

of a 1 ’s is very Important to obtain reasonable region boundaries parti ctiI i~- l y

when the numbers of samples in each regions are significantly different.

Als o, it is recommended that the data be transformed so as to make the

covario nce matr ix of the mixture distributIo n an i dentity matrix. This

normaliz at i on of the mix ture covariance makes the clus terin g resul ts

coord i nate-independen t in genera l (7].

For the two class problem which is considered in the experiments , we

fi nd a linear classifier in each reg ion. For this we choose the optimum

- (-lu ti on to Fisher ’s cri terion which is

V
1 

= (z~ + E
2
)

1 (M~ — M~) (it )

L .  . . k .
where tl. is the sample class k mean in reg i on 1’. and 

~i 
is the sample clns~ I-.

covariarice in reg i on r 1. The threshold c
1 

is adjusted for optimum classif ica-

tion . We note that in both the case of the linea r boundaries and the case

of the linear classifiers we have avoided any iterative techniques which wnu l’t

be required for find i ng the optimum parameters. ~!e feel that the compilta-

tional savings of avoiding a two layered iterative algorithm woll out we i ili c

the loss in performance. From the experimental results , we have con l si ’.-d

t ha t  this dec i si cr i is justifiable.

The cieneral algorithm used in our experim ents Is as follows .

1) Choose an initial clustering of X , ~:(O).
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2) Find the 1J
1 ’s from (10) and the a

1
1 s as discussed above

- for ~ (K); the resulting partitioning Is r (K).

3) Calculate the V .’s from (11) and the cS ’s as describ ed

above.

1.) Reassi gn all X
j 

c X according to the ru le:

a) Leave X
j 

In its present region if the li near

cl assifier correspond i ng to that region correctly

classifies xj.

b) Otherwise place X
j 

in  the region corresponding to the

cla ssifier that most strongly favors the correct class.

For example , in the two class probl em, if the V i ’s are

normalized , we place x. in region r~ correspond i ng to

the maximum (minimum) of

T
x
i 

V
~ 
+ C

i

for x. i n class I (class 2). The decision rule in is

given by

x c class 1

x
j

V 1
+ c j ~~O )

Xj c class 2

The new parition inq is denoted c (K+l).

5) If no x~ is reassi gned , stop, otherwise Increment K by 1 a nd

return to step 2.

Clearly, wi th slight modifications this algorithm could be applied 1o

the multiclass problem , usi ng a mul ti class lin ear classifier i n each Irq on ,.

For example , if a majority vote type classifier is used in each reg ion we

v.rould reassi gn x~ to the region which gives the correct class the most

votes , if it were misclassified in its present region .
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~~~erlmental Results

Experiment I

For this experiment 80 two dimensIonal samples are used to train a

cl ass classi fier with 40 samples In each class. Class 1 is normally di - -

tributed with zero mean and an Identity covariance . Class 2 is equally Ji.~idu~

between a norma l distribution with a mean of (2.5,0) and a normal di s tri t~’~’-

tion with a mean of (—2.5,0), both having an identity covariance. Thus

cl ass 2 lies on both sides of class 1.

As in all experiments the data is first transformed in order to w lIi ?erC

I-lie covariance of the mixture distribu tion , and all illustrations are

shown in the transformed space. The initial regions and the final regions

arid correspond i ng classifiers are shown in FIgures 2(A) and (B) respectively.

rue final results were found after 7 iterations. The classification results

as applied to 320 test samples (independent of design samples) was 16.5 per

u t  ,iisclassified. This compares to a theoretica l Bayes error of 15 per c .nI -

Ex~~rirnent 2

Flext we consider another two dimensional two class class ification pioh l ei

with class distributions as shown in Figure 3. Aga in 40 samples are used

from each class for training of the classifier. After 6 iterations ti e

o~ iqi rua l reg ions shown in FIgure 3(A) were changed to the fina l reg ions ~ud

cla ssifiers in Figure 3(B). It is interestin g to note here the role th- I

the regi on boundaries play in the complete decision boundary.

F-per ire ~
C 

I-o r the fina l classifier desi gn experiment we have chosen an eiq t

di~~-r1siona l two class problem. The trainin g Set consists of 320 sai-~~t - - I

1CM f m :  each class. Class 1 is normally distribute d with mean and
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covariance as identified with Standard Data I in [61. The data ii, c iass 2
is e (iuaIl y distributed between norma l distributions described by Standai i

Data 2 and Standard Data 3 in (6]. The values of the criterion i: i (5) are

plotted in Figure 4. These results compare to an error of approx i mately

C 
~~~~ percent if the optima l linear boundary between class 1 and Starudanu!

Data 7 and the optiria l linear boundary between class I and Standard Data

3 ar used as the decision boundary [6].
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4. Density Estimation

We would nex u. like to discuss further the application of our clustering

procedure to density estimation . Here we have chosen to divide the space

into three region s and to find the best linear estimate of p(x) in each

region. The criterion for a given training set X is again

J (x1 , . . . ,x~ , V 1 
, . . . ,V 3, C1 

, . . . ,c3)

3
— E 

~ 
Ip(x 1) — x1 V~ — c 1~ . (12)

i 1  x .cr . -‘j I

Th is criterion implies that we must know p(x.) for all samples in the training

set. Therefore unless we know the functional form of p(x) we must use an

estimate. Examples of such an estima te are the k—nearest neighbor and the

Parzeri estimate. For our experiment we use the n—dimension a l Parzen

#1 
estImate [8]

~ (Xj
) - ~ (l/h)~~ k((x1 

- x i)/h) 
(13)

1—1

where the kernel function is
l T

k(x) = n12 e 
2 ( l ’ r)

(2w) N

The selection of Ii is always crucial in the Parzen density estimate. h owever,

the optimization of h is not our main concern in this paper, we sel ected

-‘ n+ II: = U for n dimensiona l data with 11 samples (4], (8), [9].

As in the classifier design we restrict the regions to be separable

h’1 rhe l inear - boundaries described in (9) and (10) of the previous selection .

The linear density estimates, ~
T v~ + c

~~
, are optimized in cacti regio n to

~~ - . lu i ze the criterion

1 - T 2

~ t~
(x.) — x. V~ 

— c1 ( . ( 1 5 )

i x1cr~
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Taking the gradient of J. with respect to V
1 and the partial of wit h

respect to c 1 g ives

v~ J 1 - 
~~.— ~ (~ (x1 ) - ~

T 
~1 

- c1 ) x (16)
I . ’  i x c r 1

a~arid r~
- — - j f- ~~ (~~~~(X

j
) 

- xT V
1 
- c.)

I x
1
cr~ 

I

Setting (16) and (17) to zero and solving for V 1 
and c~ gives

V . = z 
~~~~ 

z (x. - M
i ) ~

(x ) (18)
I I x

1
cr 1 ~

and c~ = 
~~
.— E ~(x1

) — MT V 1 
, (19)

I x. cr 1

where H. is the sample mean in and

= j~
j.-. E x~ xj 

- M
1 iiT . (20)

I x.cl’.
i i

Equations (18) and (19) give the optinun linear estima te of the density

function j(x
1
) in each reg ion.

The following algorithm g iv es the general scheme used for the p iecewise

linear density estimation .

I) Choose an initial clustering i~(o)

2) Find the U
i
’s using (10) and the a i

l s as ment ioned in the

previous section for i’~(K); the resulting partition i ng is

3) Ca l cula te the V i ’s and the c.
’s as in (18) and (19).

It) Reassign x. according to the m inimum

- TI~ (x~) — x. V. — c.
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to for each Xj In X. The resul ting partition i ng is

~~ (i+ 1)

5) If no Xfs reassigned , stop, otherw i se Increment K by

1 and return to step 2.

Notice that the only difference between this algorithm and the one in the

previous section Is in steps 3 and 4. These steps are dependent upon the

particular application of the clustering and the criterion one chooses.

Experimenta l Results

Experiment 4

The above procedure was used to estimate a two dimensiona l data set

with 160 samples. The data samples were generated with a normal distribution

wi th zero mean and an identity covariance. The in itial and final regions

are shown in Fig ure 5. A plot of the criterion J is shown in Figure 6

wh i ch shows a convergence after 6 iterations.

Experiment 5

One hundred sixty were generated from an 8—dimensional norma l distr lbu—

tion with zero mean and identity covariance . Convergence of the algorithm

was simila r to the two dimensional case.
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5. Conclus i ons

From the experimental results we feel optimis tic that the genera l

approach which we call supervised clusterin g Is i ndeed a viable method

of region selection in problems such as piecew i se linear classification and

density estimation . This me thod nay prove fruitfu l in a wide class of

problems in which one needs to divide the probability space into local

reg ions and thus attack the problem at a localized level. Another advantage

to this technique is its easy adaptability to a tree structure for region

divis ion . That is , upon dividing the space into H reg ions we can apply

this algorithm to each resulting reg i on and thus further subdivide these

reg ions into M subregions. This process can be repeated form i ng a t ree

Structure with the desired number of levels. However it was found in

p 

our experiments that satisfactory results were obtained by using only a

single division into three reg ions. Three regions were chosen primarily

due to computational considerations.

It is particularly worth noting again that in the class ifier design

& we were able to use relatively simple techni ques for reg i on boundary and

linear classifier desi gn. Very promising results were found using these

techni ques which enabled us to preserve a single level iteration algorithm.

This results in considerable computational savings. For these reasons we C

feel that the results indicate tha t this method is competitive with other

known approaches to class ifier design .
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Figure 1: An examp le of clus teri ng usi ng cri terion (
~

)
with a conventiona l clustering aleorithm.
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RANDO1I FIELD APPROACH FOR STATI STICAL CLASSIFI CATION
USING CONTEXTUAL INFORMATION

K. S. Fu and 1. S. Vu

in this report we shall present some contextual classification results

using a random field model. Firs t, let us recapitula te the classification

scheme. For the time bei ng we will concentrate on the nearest neighbo r model

as shown in Fi g. 1. Every In terna l cel l K has four nearest neighbors .

K
3

1(4 K 1

1(
5

Figure 1 Cell K and i ts neighbors

These five cells (sites) form a mult ivarlate random vector x which has a

norma l distribu tion p(& (1] as

2 —1/2n 1/2 —2 T
P(x) (2wa ) 16 1 exp{- i/2 ~ (x—u) B(x—u)} (1)

where n — 5  and B has the following structure

[ 

1 
~~ l2 ~ l3 ~~ l4  ~~~l5

P 12 1 0 0 0
4

B— 
~~l3 0 1 0 0

~~ l4 0 0 1 0

• — B 0 0 0 l~~15

-

- and 
2 

is the conditional variance of the conditional distri bution :
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2
)~~~

/2 
exp (—l/2 a

2 {x
k

u
k EB 1~ 

(x~_u~)}
2
]

(2)

U
k 

Is the mean value of random variable The proposed classification pro—

cedure is to choose the joint class 0k = (ek,ek ,ek ‘0k ,ek 
) which mini mizes

1 2 4 5
the risk

R (L ,O
k

) =  
~ 

L(e k ,e
~

)P(x/ ek)G( e k)
~~~~ 1%

where G is the a pr iori dis tribu t ion for 8
k • The classification of cell K

C 
is then a result of its own appea rance as well as the appearance of Its

nei ghbors. Context Is then used in classifying every cell. This algorithm

is used to classify one set of satellite (LANDSAT) data.

The multis pectra l LANDSAT data used was provided by LARS (Lab for Appli-

cation of Remote Sensing). The data covers an area of Lafayette, IN under

run No. 72053609. The ground truth information was obtained by professional

analys ts. I t was found that there are seventeen subclasses in the data set.

Traini ng of these classes were performed us i ng approximately 3500 samples.

A differen t area of size l28 x 128 was used to test the performance of the

classification algorithm. The area covers lines (200,327), columns (120,247).

If there is one—channel measurement associated with each cell , the random

field model gives 50% classifica tion accuracy while the corresponding simple

(no context) decision gives 30% classification accuracy .

In order to make use of the mult ispectra l properties of LANDSAT data ,

we employed a rather heuristic extension of the univariate case. The add-

itiona l variates were treated as n”tational sites and the un i varlate model

can be applied. The mult ivariate site—variable case Is being I nvestigated .
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The two—channe l classification gives 50% classifIcation accuracy while

the corresponding two-band simple classifica tion gives 51% accuracy. The

context algorithm Is found to take five times longer in computer time than

the si mple classi fication algorithm. Results of classification together

with ground truth are shown in Fig. 2. The results demonstrated the feasi-

bil ity of using contextua l info rmation In classification. Multivar late site—

variabl e case is of particular interest and is currently being investigated .
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(c) I—band 4 neighbor rule (d) 2—band 4 neighbo r rule

Fi gure 2 Random field mode l results
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MODELS FOR CLASSIFICAT I ON USING SPATIAL

AND TEMPORAL CONTEXT

P.H. Swain and W. Pfaff

Classifiers operating on mul -tispectra l Imagery generally observe and

classIfy a single image point at a time. Recent studies , however, confIrm

what our IntuItion and any good photointerpreter could tell us, that there

is a great deal of information In the context In wh i ch an image point Is

found which can be helpful in i dentif ying the point . Statements like ,

“Trucks are more likely to occur on roadways than In agricultural fields ,”

describe the kind of context InformatIon wh ch can help us discriminate trucks

from tractors even though the resolution of the imagery is not adequate for

us to disce rn the shape of the vehicle. Similarly: “A pattern of strips of

asphalt and/or concrete in a non—urban area, limited In length and not con-

nectlng urban areas, Is more likely an airport than a network of roadways.”

Thus, If we consider an object together with Its context, we may be able to

U
“understand” a great deal more about the object than we can when we conslder

the object apart from its context.

Utiliza tion of context — the Information conta i ned in the spatial de-

pendencies among Image points — Is  therefore an important objective on the

way to ach i eving “image understanding. ” Syntactic characterization of scene

structure , described elsewhere In this report , is one way of ut ilizin g con-

text. Another is to think of a scene as being generated by a multi—dimensional

random process characterizable in terms of its statIstica l transition

properties.

A relatively simple approach to the statistica l treatment of context

in remote sensIng Imagery was suggested by Welch and Sa l ter [1]. However,
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their study utilizes simulated digital data produced by manua l interpretation

of aerial photography . During the past year, Fu and Vu have applied the

Welch and Sa l ter approach to multispectra l scanner data collected by aircraft

and spacecraft. The results of these experiments confirmed that contextua l

informa tion can be extracted from multispectra l imagery by this approach and

that such information aids In achievIng accurate classification .

But the Welch and Salter method suffers from a number of practica l dif—

fic ulties . The first is the severe restrictions placed on the form of the

• •1 spatial context that can validly be incorporated because of the simplif yi ng

assumptions which are necessary , Essentially, only the data associa ted with

the four “nea rest nei ghbors ”

Fig. I. Image point to be classified (X) and
its four nearest neighbors .

of a point to be classified (Figure 1) can be accounted for. The second dif-

ficulty is the added computational load required to imp l ement the method and

apply It to every image point.

Two new models which we have formulated for the two-dimensiona l random

process, based on a si gnificantly different way of thinking about the spatial

dependencies , hold promise for allevia ting both of these prob l ems. Arbitrary

contextual confi gurations , such as those illus trated In Fig. 2, can be dealt

wi th by means of the new models , and the required computations are somewhat

sim pler. Fur thermore , the statistIcal dependencies which must be lea rned

from a typical scene in order to classif y a new scene are less complex
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and more readily determined.

To further reduce the computational load without compromising the quality

of the analysis results , we are considerin g the use of sequential and adaptive

processes wh i ch will determine regions of an Image for which context analysis

is potentially useful. When there is no potential benefit to be ga i ned from

~ ~~~~~~ 
_____

- Figure 2. AlternatIve contextua l configurations

incorporating context Into the classification process, sim pler decision pro—

cesses can be applied , reducin g the computations accordingly.

Durin g this project year , we have developed software wh i ch will enable

us to statis tically characterize the contextua l content of a LANDSAT Image.

In addition , we have formula ted and begun implementation of a Bayesian

classifier model which is particularly attract i ve for contextual classifi—

cation . This classifier is also useful for analyzin g time—sequential Image

data and its use for that purpose is soon to be demonstrated.

4
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PHASE UNWRAPPING

B. O’Connor and T.S. Hua ng

I. Introduction

I n several applications of one and two-dimensional signal processing, the

analytic phase function must be computed . This function is called the contin-

uous or unwrapped phase, One well known use of the unwrapped phase is to corn-

pute the complex cepstrum of a signal . Cepstral techniques have been used on 
—

one—dimens i ona l signals in such areas as seismic , speech , and hydrophonic

analysis (1], More recently, these techniques have been extened to two—

dimensions wi th applications to stability [2,3].

Other non—cepstra l applications of the unwrapped phase Include blind de-

convolu tion and polynomial root distribution determination . Bl i nd deconvolu—

tion refers to methods which estimate a blurring funct i on given only the

blurred picture , Successful work has been reported for (4,5, 6,7] estimating

the magnitude of the blurring function from detailed blurred i mages. However,

the determ i nation of the phase has not been adequately solved yet. Pattern

recogn ition techniques have been applied with some success when the blurring

C funct i on is one from a class of several [8]. A more genera l method , which

is a modification of a technique applied to multi—f r5~me p rocessi ng, has been

a disa ppointment j udging from prelimi nary results (10,11]. Phase unwrapping

has been used to reconstruct the phase of the one-dimensional bl urring func—

tion from a blurred image [7], again with the disapp ointing results. However,

the results were obtained from an unsatisfactory phase unwrapping algorithm. —

The employed algorithm failed In many cases to unwrap the phase correctly.

Hence, the conclusion s reached were premature. Recently, a new phase

u nwrapping algorithm has been proposed [12]. ThIs method comb i nes the
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Information In both the phase derivativ e and the principa l value of the phase

in to an adaptive numerica l integration scheme. This al gorithm has the po-

tential of being very accurate, However, i t d i d  not obtain the reliability

cl aimed in the paper. Below we will discuss among other things our improve-

ments to this algorithm. We have found a way to increase both the speed and

the accuracy of this phase unwrapping method. Our modified algorithm can now

be applied to the phase reconstruction problem to obtain accurate results.

We plan in the future to attack the blind deconvolution problem in both one

and two dimensions and hopefully more reliable conclusions will result, A

previous report [3] discussed the two—dimensional phase unwrapp ing problem.

II. Phase Unwrapping (One Dimension )

Let x(n) be a finite real sequence of numbers n > 0 with Fourier trans—

form X(eiW ), the unwrapped phase of X is arg(X(eJW )]. This must be a contin—

uous and odd function of w. Generall y, only ARG [X (eiu)] (the principal va l ue)

can be eva l uated from X(e ) via the inverse tangent. That ts , only the

principal va l ue of the phase is known and this must be unwrapped to obtain

arg [X(eJW )]. If X(e~~) were known for all u, this would be a trivial task.

All that would be necessary is to patch together pieces of ARG (X(eJW )] to

obtain a continuous function with boundary condition arg(X(e~
0)]  = 0. How— C

ever, the FF1 (Fast Fourier Transform) is emp l oyed in the ca l culation of

X(eJW ) and hence, X(e~
”
~) is known onl y on a discre te set of points. Thus ,

S 
the discont inuities in ARG [X(eiW )] are diffic ult to detect. One method of

phase unwrapping examines the samples of the principa l va l ue of the phase

and attempts to detect large jumps between adjacent samples. The rationale

is that these jumps depict the discontinuities of ARG (X(e~
”
~)]. However,

practical problems , such as what cart be conside red a large jump and a proper

sampling rate , plag ue this technique. Generally, for this method to have any
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chance of success at al l , I t is necessary to sample the phase at a very high

rate. However, a high sampling rate does not guarantee success and It re-

sults In excessive calc ulation time . As an example, Fili p [7] used a 2048

length FFT to unwrap the phase of a sequence of length 128 with the jump

- - threshold set at l.O6pi . We tried hi s a lgori thm on 100 sequences of length

128 obtaIned from a picture of various texture patterns and found that it

failed 29% of the time .
- 

- The unwrapped phase can be unambiguously defined in terms of its deri-

vative arg [X(eJW )] = ~~-. arg[X (e-~~)] by arg[X(e~°~)] f~ arg (X(e~
5)1 ds,

arg[X(e~
0)] = 0. Computation of the phase derivative is straightforward [1 ,2]

x (e~~)x (e-~~) - X (e )X~(e~~)arg~ [X(eJu )] = R I . 1
2 

R
IX(e

jw
)I

Note that X(eJW ) = —jFT{nx(n)}. Hence, the integration of the phase deriva-
t i v e  is  another technique for phase unwrapping. The advantage of this method

over the previous one is tha t the detection of discontinuities is no longer

necessary. However, this method suffers from problems due to numerical inte-

C gration. Again , hi gh sampling rates are necessary to produce acceptable re-

sults. Furthermore , the phase error increases as ~~ increases as a resul t of C

accumula ting integration errors, Higher order integration formulas do not

offer a solu tion to this problem because they introduce new problems [13].
S 

A logical al ternative is to combine the information In the principa l

va l ue wI th that of the phase derivat ive. Tribolet [12] successfully accom—

plished this by emp l oying an adaptive numerical integ ration scheme. He used

trapezoidal i ntegration to acquire a number which is added to the p revious

value of the unwrapped phase. The princ ipa l va l ue of this estimate is corn—

pared to the known principa l va l ue. If these numbers are close enough, the
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estimate is clamped to the appropriate va l ue of the unwrapped phase which has

the proper principa l va l ue, In other words [12], assuming the unwrapped phase

at is known , we define an estimate of the unwrapped phase at > by:

jw o _____ 
jw
0 

j w
1

~rg[X(e )1w 0] = arg[X(e ~~ + 2 
{arg”[X(e )] + arg [X(e ) ]}

Clearly this estimate improves as the step Interva l t~u = becomes smaller.

The bas i c i dea of Tribole t’s a l gor i thm i s  to ada pt the step s ize  t~w until the

result of numerica l integration matches the information given by the principa l

value of the phase, Defi ne E(w
0
,w

1
) ~ AR G [X( e 1 ) f ~~] - ARG [X(e l )], The

step size which l eads to a consis tent phase est i mate at is one in wh i ch

I E(w~,w 1 )I 
< I << -pr . When the above condition is satisfied the unwrapped

phase i s defi ned by:

ju
larg[X(e ) ]  = ~rg[X(e ) 1w 0] — E[w0,w 1

]

jw
1

S 
so it wraps to ARG[X(e ) ]  withou t error. Tribolet also wrote a clever

program which implements this algorithm. He takes full advantage of the FFT

algorithm and reduces the number of extra DFT computations to a reasonable

small number, The FF1 al gorithm is used to calculate X(eJW ), X.(eJu ) ,

~ ju M
ARG[X(e ) ]  and arg [X(e ) ]  at N = 2 equall y spaced frequency points for N

greater than or equa l to the total number of points in x(n) input sequence.

The above scheme is used to unwrap the phase starting at w=0 . The step size

S adaption was designed to minimize the number of extra DFT’s required . As

will be shown later this is necessary in order to keep the computation time
‘P

reasonable.
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I I I , Modification of Tribolet ’s Phase Unwrapping Algorithm

A si mple modification of Tribolet ’s al gori thm will allow the phase to be

unwrapped with greater reliability and speed . One of the major difficulties

with phase unwrapping algorithms occur when the Input sequence has zeroes

close to the unit circle. Near these points [see appendix A] the phase and

the phase deriva ti ve change rap idly thus causin g errors in the standard

S methods of phase unwrapping. Tribo l et ’s a l gori thm effect ively combats these

errors in  many cases by adaptively integrating near such points. However,

large unwrapping errors can occur when the integ rated phase derivatIve clamps

to an incorrect va l ue of the unwrapped phase. These errors can be spectacular

at times causing the unwrapped phase to jump to va l ues off by severa l thou-

sand, In i ts present form Tribolet ’s al gori thm p roduces these errors qu i te

often when there exist zeroes very close to the unit circle, Furthermore,

these errors are essentially independent of the size of the FFT, Ideally, a

phase unwrapping algorithm should either unwrap the phase to the correct

va l ue or fail. Failure should occur when zeroes are too close to the unit

circle. How close, should be an option determined by the user ’s application

and the computer system ’s accuracy.

This reliability proble m can be traced to the calculation of the phase

derivative ’s integra l between two adjacent points. If the phase derivative

is changin g rap idly in this region , the integral’ s va l ue may be quite large.

Furthermore , this va l ue may be such that when added to the previous value of

the unwrapped phase to give an approximation of the new va l ue of the unwrap—

ped phase, i ts principal va l ue may be close enough to the true principa l

va l ue (determined by the parameter E) for it to be clamped to an incorrect

va l ue. This can occur before the algorithm has a chance to either initiate

adaptive integration or to carry adapt i ve integration further.
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One possible solution is to decrease the c lamping  threshold va l ue !. A

smaller va l ue of E w i l l  reduce the pro bability of this kind of error because

a smaller clamping reg ion exists around the principal va l ue. However, too

smal l  a magnitude will cause many unnecessary adaptions and , hence, increase

the computational t ime  excessively. (Note , E=lr/14 in Tribolet ’s program,)

A better solution is to limit the integra ’s magnitude to jumps less that i~.

If a jump is larger than thi s then start adaption by temporarily halving the

step size. This w i l l  total ly eliminate false j umps and it w i l l  a l low adaptive

integration to do its job and find the true unwrapped phase. With this met hod

I can be set to a larger va l ue such as n/le so that the number of unnecessary

adaptions will be minimized . Note, in some cases this will add unnecessary

computation when the phase difference wk wk_ l has magnitude greater than n

and at the same time , the integrated phase derivative ind i cates this value

of Wk~ 
The occurrence of this is extremely rare. This will be demonstrated

later when the results on Table I are discussed .

An important consideration is the choice of FF1 size N, that is , the

number of samples of X (eJW ), X~(eJW ), and ARG [X(e~~)]. It is generally true

that the longer the input sequence x(n) the higher the probability that it

has zeroes close to the unit circle , Hence, since the comp l ex cepstrum falls

off as ct~/n or ~~ /n where is the magnitude of the root which Is both less

than one but closest to one, and Is the magnitude of the root wh i ch is both

greater than and closest to one, the complex cepstrum will have a l onger

duration . Moreover, since the Fourier transform of the odd part of the com-

plex cepstrum is proportiona l to the unwrapped phase, therefore, the unwrap-

ped phase can be more oscillatory than the magnitude of the Fourier trans—

form. Hence, by the inverse sampling theorem, it is des i rable to unwrap the

phase on a grid of points more numerous than the number of input sequence
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points to avoid gross undersampl i ng errors. Note that the complex cepstrum

usually has infinite duration so theoretically the unwrapped phase cannot be

reconstructed exactly from its samples . However, since the cepstrum decays

rather quickly an adequate sampling interva l can be found.

Since the algorithm uses adaptive integration , it would seem that the

sampl i ng rate is not i mportant if the only desi re is to unwrap the phase at

these specific samples. However, the number of samples Is i mportant for three

reasons. First , usually the samples of the unwrapped phase are calculated to

represent the continuous unwrapped phase. Hence, from the above discussion ,

the nunber of frequency samples must be at least several times more than the

length of input sequence. Secondly, if the sampling rate Is low, then the

number of adaptlons and hence extra DFT calculations will be high. As demon-

strated in appendix B, if the number of adaptions is high , then it will be

more efficient to increase the sampling rate by using a larger FFT size.

Finally, a low samp ling rate can cause unwrapping errors, even when the

modified adaptive algorithm is employed. For example, two adjacent fre

quencies may have the same principa l va l ues and equa l and opposite phase

derivatives . Hence, the algorithm will unwrap the phase of the second to

that of the first. However, it is possible that its actual val ue is plus or

minus an integra l multiple of two pi. In this example, the adaption routine

will never have a chance to correct this undersampled condition . This ex-

ample is indeed a limitin g case for any phase unwrapping technique in which

the phase is undersampled. However, the probability of occurrence of such

errors can be lowered by either increasing the FFT size or by lowering the

c lamping threshold E. Unfortunatel y, lower ing ~ increases the number of

adaptions greatly and , hence, ra i ses computation time excessively.
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Some experimenta l results are Indicated In table I which demonstrates the

tradeoff of FF1 size and number of adaptions. One hundred sequences of length

256 were generated from random numbers of magnitude less than one. For most

of the algorithms tested FFT sizes were varied from 256 to 201e8 In multiples

of two. For each FFT size the below information was recorded. The first

entry Is the number of sequences in which the algorithms failed to unwrap the

phase either correctly or incorrectly. Failures can result from eithe r a zero

being located on the unit circle or if a frequency interva l has been divided

into too many parts during adaption . For our program we allow an interval to

be subdivided into 65536 parts. The next entry indicates the number of phases

(out of one hundred ) wh i ch were unwrapped incorrectl y. Methods for obtaining

this information will be discussed shortly. The following number represents

the average numbe r of adaptions. The last entries give the average numbe r of

multiplications necessary to unwrap the phase. This should give a rough esti-

mate for how long a FORTRAN program would take to unwrap the phase of a

sequence in which the number of adaption s rs equa l to the Ind icated average.

However, since such operations as FFT resorting and the inefficient machine

code generation of FORTRAN are not included in this quantity, it does not

portray an accurate indication of a FORTRAN program ’s speed. Nevertheless ,

the number of multiplications would give an accurate estimate of speed if

the algorithm was implemented in digital hardware. A more complete discussion

on the algorithm ’s efficiency is presented in appendix B.

We first tested Tribolet ’s algorithm for three different values of E

and severa l different FFT sizes. Notice errors still exist when E =  n/16 and

the FFT size is 2048. In many cases the accumulated error caused the phase

to be off by as much as twenty pi. Also observe that the average number of
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adapt ions increased as I is decreased (approximately a two fold increase for

each time I is ha l ved) while the number of correct phase unwrappings in-

creased. As I is decreased the percent of failure increased because the

probabili ty that the integrated phase enters the clamping region is lowered.

Now when Tribolet ’s algorithm is modified to include the integrated phase

jump limit of p1 the accuracy imp roved greatly. For FF1 sizes greater than

256 no errors occurred for these examples. A few errors did occur when the

FF1 size was 256 due to extreme undersampling . A close study of the table

reveals that the number of adaptions is approximately ha l ved for each two

fold increase in FF1 size. Since the number of cal culations for a FF1 is

proportiona l to N . log
2N and since each adaption requires a multiple of N

further operations , there exists an optimal FF1 size which minimizes the

total number of operations for a specific example. However, since knowledge

about the number of necessary adaption s is not available before hand , only

a rule of thumb can be formulated , For the data on table I , FF1 sizes of

four times the sequence length gave the fastest computer runs. However,

this is data dependent and in fact if we assume all the input sequence entries

are positive such as picture data (see Table II) FF1 sizes eight times

larger gave the fastest results.

We have changed Tribolet ’s algorithm even further to employ a modified

Simpson ’s integration rule wh i ch results in a 10-20% reduction in the average

number of adaptions without not i ceable affecting the algorithm ’s accuracy

(see Table I). One explanation of this result is that in many cases one

• application of Simpson ’s rule is better than two applications of trapezoidal

integration [13] and hence furthe r adaptions can occasionally be avoided .

Higher order integration schemes cannot be applied to this problem.
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A further study of tables I and II will reveal some other interesting

results. For picture data if the jump limit is decreased to n/2 for FFT

size of 512 approximatel y half the number of errors occurred. However, the

number of adaptions increased. Note that this example was presented for only

instructive purposes since FF1 sizes of 1024 and 2048 give much fewer opera-

tions . If the jump limit is increased to 5.5 for the random data , errors

appea red when F~T size was 512. This can be expleined by noting that the

highe r the jump l imi c is , the higher the probability of a fal se jump.

IV. Error Analysis

I - In order to eva l uate the accuracy of the discussed phase unwrapping

algorithms a method must be found which is capable of unwrapping the phase

with no error. However, no pract i cal analyt ic techni que exists for accurately

determining the unwrapped phase for a long sequence at all sample frequency

points. Fortunately, the unwrapped phase at w ii can be calculated from any

of a number of techniques. The unwrapped phase at u ~ ¶ can be compa ed to

this true value to determine if any errors occurred In the phase unwrapp ing

procedure. Hence, fal se jumps can be detected. The reader should note that

the equality of these nu,~bers does not ensure that the phase was unwrapped

correctly, because errors can be both positive and negative , so offsettinç

errors can exist. Fortunately, the probabil ity of offsetting errors is

small , Not i ce, further , that if the unwrapped phase at w = ii does not equal

the true value then phase unwrapping errors definitely exist.

• Methods wh i ch can calculate the unwrapped phase at w = ¶ are derived

from the fact that arg[X(e~
”
~)] = —m0

iy. Here m0 is the number of zeroes out-

side the unit circle which the polynomial formed from the input sequence has.

Hence, one obvious method to determine m0, is to find all the roots of this
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I polynomial. However, the Input sequences are usually quite long so root

finding techniques become too time consuming . Of all the stud i ed techniques

we found that a modified Jury table [lie] was the easiest to implement and

had fewer operations than most. The Jury table method does have numerica l

problems for large pol ynomials so it was necessary to use double precision

arithmetic. See table I for a tabulation of results. In sumary, the Jury

table was employed to cal culate m0 wh i ch, in turn , is used to detect errors

that occur in the phase unwrapping process.

For long sequences still another method exists wh i ch can lower the num-

ber of adaptions on the average of approximately 10 percent. Generally, an

aribitray sequence of numbers has a phase which contains a significant linea r

component. If this component could be reduced or eliminated , then this should

decrease the number of adaptions. This is especially true when the phase

unwrapping algorithm has a phase jump limit . Here, the linea r phase com-

ponent ’s slope contributes to the integration phase derivative and , hence,

increases the probability that its va l ue will surpass the phase jump 1k it.
p 

Therefore, the linea r phase component can introduce unnecessary adaptions

which would not occur if this component was smaller , Unfortunately, for a

given sequence the linea r phase component is not known. However, for a

sequence of length L the average slope of this line is approximately L/2.

This follow s from the fact that this slope is equa l to the number of zeroes

outside the unit circle. Furthermo re, thousands of experiments on picture

and random data corroborate this. Therefore, if all input sequences are

shifted by L/2 before phase unwrapping, this component will be reduced and

the numbe r of adaptions will be reduced , See table I for an example of this.

The i mportance of reducing the number of adaptions must be emphasized.

Each adaption requires the calculation of a DFT at a particular frequency.
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A large numbe r of extra DFT calculations results in excessive computational

time. Hence, methods wh i ch reduce this number are i mportant. Above, we have

discussed methods wh i ch can both increase the accuracy and decrease the com-

putationa l time for adaptive phase unwrapping algorithms .

Work Is presently being performed to use the above techniques to charac-

terize the phase of textures, Hopefully, several parameters can be extracted

from the unwrapped phase which can adequately describe the texture.
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APPENDIX A

Effect On Phase Unwrapping When Zeroes Are Near The Unit Circle

Let X(z) be the Z-transform of a finite length sequence x(n). Then

X(z) = AZ r fl (l-a kz
’) H (l-b kz)k=l k—i

where all la k i < 1 and Ib k I < 1 , here we are not allowing zeroes on the unit

circle. Hence, the Fourier transform is defined as follows:

• . H - N
X(eJW ) = A jwr 11 (l—ake~~

’
~
) ii (l— b~e~°~)

k—l k—i

For simplicity assume all zeroes are within the unit circle so

- M
X(e~ ) = fl (l-a ke Jw )

k= 1

wh i ch implies

M 
-
.

I X(e~
’
~)I 

= II l—a~e ~~I
k=l

arg[X(eiW )] = E ARG (l—ake
”’
~
)

k—I

Let
- j (A)e kak 
= lak i e

then

• H [Ia Isin (w —O )
arg[X(eJW )] = 

k~l 
Arctan l _ I ak lcos (u_B k

)

Conside r only the Lth term which corresponds to a zero close to the unit

ci rcle. Assume Ia~ I l— c where c is positive and small. Now
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d Ia
~
Isin (w—8

~
) Ia & Kcos (w_ 8

~
)_ I a

~I)
r [Arctan 

l- J a~ Jcos (ur.ej] i— 2la~ lcos (w—8~)+laJ~

Hence, It follows that at w = the phase due to this zero is zero and the

phase derivative is a maximum approximately equa l to c 1 . At ~S = /~~~ on

either side of w = e~ the phase derivative is zero and the phases are either

approximately 
~ 
n/2. Therefore, in the interval -V’s to e

~ 
+v’i~ the

phase increases by approximately 11 whIle the phase derivative starts at zeroes

• Increases rapidly to I/c and then decreases to zero again. In fact, in the

region the phase derivative has an average val ue equa l to i~/(2 Tn). Of

course, in order to obtain the true phase and phase derivative of x(n) the

contributions of all the zeroes and poles must be added .

Hopefully, the above gives some inc i te into some possible problems which

plague phase unwrapping methods. When a sequence has zeroes close to the unit

circle both the phase and phase derivat i ve change rapidly near these frequen-

cies. Hence, a higher sampling rate Is required near such points to adequate—

ly represent these quantities . Adaptive phase unwrapping has the potential

of sampling the phase and phase derivat i ve more often around these frequencIes

while sampling less when the phase is slowly varying. However, Trlbolet

forgot to protect his algorithm from the integrated phase clamping Itself to

those va l ues of phase which constitue an excessive jump. 
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APPE N DIX B

Computational Considerations For Adaptive Phase Unwrapping

Below, we plan to calculate the numbe r of multiplications necessary to

Implement adaptive phase unwrapping and to discuss computational tricks wh i ch

can reduce this number. Both trapezoidal and Simpson ’s integration schemes

will be consi dered. Basically, adaptive phase unwrappIng can be broken into

two parts. The first consists of using the FF1 and arc tangent to determine

both ARC(X(eJW )] and arg ’[X(e~~)1 on a un i form circular grid around the unit

circle which , in turn , is used to calculate arg[X (eJW )J on this same grid ,

The second part of phase unwrapping is necessary if part one fails to meet
- - the consistency condition. Here, the DFT Is emp l oyed to cal culate the prin-

cipa l va l ue of the phase and phase derivative at points not on the initial

grid until a consistent va l ue is found. This is the adaptive part of phase

unwrapping and its deployment is data dependent.

During the in lt i a l stages of phase unwrapping both the principal va l ue

and phase derivative must be calculated . Assume x(n) Is a finite sequence of

length H and let N > M (N is a power of two) be the number of points corn-

puted in the FF1. In order to determine the above quantities both X(eJW ) and

X’(e~
’
~) need to be computed. X(eiu) is the Fourier transform of x(n) while

X ’(e~°~) is the Fourier transform of —j n x(n), Both X and X’ can be found

using only one application of the FF1 since X(n) and nx(n) are rea l sequen-

ces. Just let s(n) = x(n) +j nx(n) then X(eJW ) l/2 (S(eJW ) +S~(e~~
’
~)) and

• X~(e
JW )=_l/2(Se~~) — S~ (e

Ju)), This trick allows two Fourier transform

calculations in one FF1 and hence only 2Nlog2N real multiplications are re-

qui red plus 2M multiplications to form —nx(n). Since the unwrapped phase is

an odd function , it need only be unwrapped at N/2 points. At each of these
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points the following calculations must be performed : the phase derivative

wh i ch requires 4 multiplIcat ions; the principa l va l ue of phase wh i ch requires

approximately 8 mult Ip licat ions; trapezoida l integ ration and a consistency

check which need approximately 4 multiplications. Hence, the modified

Tribole t ’s algori thm requires 2t1 + 2N log2N + 811 rea l mu ltiplications for its

nonadaptive part. Our algorithm wh i ch employs Simpson ’s in teg ra t ion requ i res

app roxima tely  211 + 2N log2N+ lON multi plications for this stage.

The n umber of opera t io ns necessary for the second stage, the adaptive

part , of phase unwrapping is data dependent. It depends on A the average

number of adaptions necessary to unwrap the phase of a set of sequences.

This number is also dependent on the FFT size N and , in fac t, for every two-

fold i ncrease in N A is app roximately ha l ved, For each adaption the followIng

operations are necessary : lie multiplications to calculate both a sine and

cosine , 8 for the arc tan gen t, 5 for the phase derivative , 7’M for DFT, and

approximately 13 other operations, Therefore, the number of real multi p li —

cations for adaption is approximately 7~A.(M+6). Hence, the number includ i ng

par ts one and two tota l s  2M + 2 N l o g 2N + lON + 7.A.(M+6). It should be

stressed that his isn ’t necessarily an accurate guide for determining the

speed of a FORTRAN program . Other factors such as assembly code optimization

and floatin g point hardware enter into this calculat ion . However , this for—

mula does indicate that there exists an optimum FFT size N wh i ch can minimize

operations since A is inversely p roportional to N, Also , I t is advantageous

to find a method to minimize A for a given N. In terms of computer time , we

found that for the random numbe r data N = 4t1 was best while for picture data

N = 8M gave compa rably accurate results. When the tota l number of calcula-

tions is compared to computer time for a FORTRAN program we found that in

order to correlate closely the nonadaptive calculations mus t be wei ghted heavier.
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The above Implementation is more efficient and accurate than Tribole t ’s

[12] orIg inal adaptive phase unwrapping algorithm since Simpson ’s integration

rule and a phase jump limit were employed. Another simple programing change

was implemented wh i ch increased the speed significantly, by pulling out a

complex exponential calculation out of DFT loop in the adaptive stage of the

program. This obviated its repeated cal culation but introduced numerica l

problems wh i ch were overcome by the use of double precision arithmetic.
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APPEND i X C

Phase Unwrapping From Princip a l Va l ue Only (Filip ’s Method)7

- - In this appendIx phase unwrapping from onl y principa l value information

Is compared to adaptive phase unwrapping . As stated In the main report, in

order for the phase to -e unwrapped from principa l val ue samp les it must be

sampled at a very high rate. Furthermore, a threshold must be chosen which

determines the existence of princ i pal val ue discontlnuitles. Hence, both the

sampling rate and the threshold are important parameters for this method of

phase unwrappIngs . Unlike adaptive phase unwrapping this technique does not

- 

- 
use either intersample or phase derivative information , and as a result it Is

not as accurate. This is especially true when the Input sequence has zeroes

near the unit circle , Furthermore , since adaptive phase unwrapping emp loys

FF1 sizes only severa l times (usually 4 to 8) the origina l sequence length ,

- _ s while the above method needs ratios of 16 to 32 times, hence, adaptIve phase

unwrapping is faster as well as more accurate.

See table III for tabulated results of phase unwrapp ing from principa l

value information only. Each line sumarizes the results of unwrappIng the

phase of one hundred sequences of length 128. For the first half of the table ,

the sequences were obtained from a picture wh I ch contained many random texture

patterns . The numbers ranged from 0 to 255 These examples were used to test

the accuracy of Fili p ’s phase unwrapping results on picture data [7]. He

used a 2048 length FFT to unwrap the phase of a sequence of length 128 wIth

the jump threshold set at 1.O6ir. For these parameters we found that 30 per-

cent of the sequences had their phase unwrapped incorrectly. That Is , eithe r

the algorithm Indicated a false jump (represented by negative numbers) of 2it

or It found a false discontinuity causing a positive error of 21T. Note that
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severa l of these errors can occur in the phase unwrapping of one sequence and ,

hence, there is a small probability that offsetting errors may occur. For the

second half of the table , the sequences were formed from a random number gen-

erator wh i ch calculated numbers between minus one and one.

Fil ip ’s phase unwrapping algorithm is plagued by some Important practica l

problems. Host phase functions contain a linear component of slope equal to

the number of zeroes outside the unit circle if the input sequence is consid-

ered to be a polynomial in z 1 , The effect of this component is to increase

the probability of missin g a discon tinuit y for a given threshold.since the

phase will change more between poInts , (See no shift cases in table.) There

• are several ways of surmounting this problem . First we could try to converge

to the correct phase by iteratively removing the linear phase component. Th i s

method was used by Fil ip (7], He initially unwrapped the phases of the given

sequences and noted the value at u = ir , This va l ue divided by ~r gave an

approximation to the slope of the linear phase component. Next, he effectively

subtracted this component by shifting the input picture segment by this amount.

Finally, these steps were repeated several times until the unwrapping algo-

rithm had va l ue of zero for the phase at w = it, The speed of this algorithm

could be increased if all the initial sequences were shifted by half the

sequence length. This Is motivated by the fact that the number of zeroes

outside the unit circle for a large number of sequences averages around this

value. Hence, fewer time consuming iterations will be needed. For sequences

of length not more than 256 it would be much quicker to use a method such as

the Jury table to determine the zero distribution of the sequence and hence

the true linea r phase slope. This obviates the need to calculate the phase

more than once, Hence, the entries in the table wh i ch indicate a shift

were calculated by first using the Jury table to determine the linear phase

-~ 106
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slope and then each sequence was shifted by the approprIate amount to remove

this component. However, even if this is known accurately Fil ip ’s phase

unwrapping algorithm still is error prone as seen in the table. Even for a

FFT size of 4096 errors occur. On the other hand , FFT sizes of 512 are

quite adequate for obtaining accurate results for adaptive phase unwrapping.

Furthermore, the linear phase component need not be found since the phase

derivative takes this into account,

F i lip ’s phase unwrapp i ng algorithm emp l oys approximately

• 2N log2N + (8+2)

multIplications (8 multiplications for ATAN2) for each iteration. The Jury

table needs only M2 multipl i cations , where H is the sequence size, For pic-

ture data II = 32M gives about 95~ accuracy for the examples used
, Hence, for

a sequence of length 128 approximately 135,000 multiplIcations are needed to

unwrap its phase. For such sequences adaptive phase unwrapping requires

211 + 2N log2 N + i ON + ~~~ (11+6)

(see appendix B) multiplications. For picture data A is approximately 36

while for random number data A is approximately 8.5 so 65,000 and 42,000

multi plications are needed,
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TABLE I

• Random Numbe r Data (100 256 length sequences)

Algorithm FF1 A No. of Calculatio ns (1000’s)
Size Failed Errors Stage 2 Stage 1 Total

• Tribolet 256 3 69 144 265 
- 

7 272r= ,~ii. 512 3 1e3 81 149 13 162
No jump limit 1 024 3 26 42 77 28 105

2048 3 15 21 39 63 102

Tribolet 512 5 32 139 255 13 268
- • = ir/8 1024 5 18 73 134 28 162

No jump limit 2048 5 9 36 66 63 129

Iribolet 512 10 17 221 405 13 418
E = n/l6 1024 10 11 121 222 28 250
No jump limi t 2048 10 5 62 114 63 177
Modified 256 3 9 186 340 7 347
Trapezoidal 512 3 0 90 165 13 178

2 E = ir/4 1024 3 0 4~ 86 28 114
jump limi t — i t  2048 3 0 21 39 63 102

Simpson 256 0 50 175 320 7 327
Method 512 0 0 79 145 14 159
E = -true 1024 0 0 36 66 31 97
jump limit =t r  2048 0 0 17 31 66 97
Shift of 128 1024 0 0 33 60 31 91

-
~ 

Simpson 256 2 67 138 253 7 260
E = .7 512 2 12 70 128 14 142
jump limit= 5 ,5 1024 2 0 35 64 31 95

2048 2 0 18 33 66 99
Jury table 0 0 l5~ longe r than
(double precision) single (PDP—ll-45)

Jury table 0 5 131
• (single precision)
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TABLE I I

Picture Data (100 256 length sequences)

FF1 A No. of Calculations (1000’s)
Size Failed Errors Stage 2 Stage 1 Total

• Simpson 512 1 24 342 627 14 641
E — it/C 1024 I 0 i39 255 31 286
jump limit = it 2048 1 0 65 119 66 185

Simpson
E = it/C 512 0 11 450+ 800+ 14 800+

• jump ll m i t ir/2

Modified 512 1 0 317 581 13 594
TrapezoIda l 1 024 1 0 163 299 28 327
E — it/C 2048 1 0 85 156 63 219
jump ilmit — ii

Jury table 2 131
(double precision ) double

precision

I
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TABLE III

Phase Unwrapping

only using principa l value (Filip ’s method)

FF1 Threshold % in Sum of Sum of
Size Error positive absolute

and va l ue
negative errors
errors

Texture Data

with shift 2048 1.06-ir 30 —28 84

with shift 2048 ~r 16 —10 34

with shift 2048 .9-it 49 — 4 132

with shift 4096 ir 5 -2 10

with shift 1024 42 —6 104

no shift 2048 it 66 —216 216

Random Numbe r Data

with shift 2048 it 1 2 2

with shift 1 024 iT 3 2 6

with shift 512 ii 18 4 36

no shift 2048 it 48 —108 108

S 
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THE PROJECTI ON METH OD

S. P. Berger and T. S. Huang

I. Introduction

The projection algorithm is an iterat i ve approach to Image restoration.

The method has been extensIvely described in p revious reports, but a brief

explanation will also be presented here. Two studies have been completed to

compare the projection method with the singular value decomposition approach.

A two—dimensiona l Image was used in one study which has been reported earlIer.

More recent results have used a one—dimensional signa l to compare the two

methods. This report inc l uded a discussion of plans for the application of

the projection method to mensuration and classification of actual Images.

Other anticipated results are also discussed .

II. The Algorithm

The purpose of a restoration process Is to approximate the original i mage

as closely as possible. The degradation of a two—dimensional image can be

-~~~~ represented by g(x,y) D(f(x,y)] + n(x,y), where f(x,y) is the ori g ina l  i mage,

n(x,y) Is noise, D is a degrading operator, and g(x,y) is the degraded image.

The discretized vers ion of an image consists of a finite array of picture

elements (pIxels) with magnitudes representing gray l evels.

If the degradation Is linea r, It can be represented as g = (H] f+n ,

where we have “stacked” the rows of the image array into a column vector f.

Neg l ecting noise the equatIons are

111
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g 1 
= h 11

f
1 + h12f2 

+ ... + h lN fN

g2 h21 f1 
+ ‘.. + + h2NfN

= h
111f1 

+ “ + + hMNf N

where N may not equa l M. The projection algorithm is an iterative technique

for solving this system of equations,

The solution is obtained by successive projection onto planes in hyper—

space. For the case where a unique solution does exist , the algorithm will

converge to the point of intersection of the hyperplanes. If the planes do

not intersect at a single point , the algorithm will converge to a point which

may be a usefu l approximat i on In a restoratIon sense. One cycle of iterations

is complete when the projection is made onto the Mth hyperplane.

Since the algorithm was compared with the singular value decomposition

(SVD) approach, a review of the SVD will be given here. The SVD method is

based on a representation of the pseudo—inverse of a matrix. The linear de-

gradation has the form g = [H] f+n for the discrete case. The original

vector f can be estimated by f = (H]+g, where (H]
+ is the Moore—Pen rose

pseudo—inverse. Now (H]+ can be obtained by

R
[H]~ ‘

1/2 V .U
$
5

_. 
i—i (x .)

where R is the rank of (H], U1 and V 1 
contain (in columns) the elgenvectors

of (H][H]T and (H]T(H], respectively. The restoration is then given by
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= E V 1 U 1
T g .

=1 (A 1 )

The user must decide on the optimum va l ue of P, since the effect of noise

will dominate the sumatlon after a certain number of terms.

III. Past Results

A comparison between the p rojection algorithm and the SVD which was re-

ported ~‘ar1Ier Invo l ved •~n 8x8 element representation of the number “5”. A

linear degradation with additive Gaussian noise was sImulated. The va l ue at

each pixe l was replaced by the average of the 9 points in the 3x3 block

surround I ng the element. The SVD approach to this problem was given by

Huang and Narendra (1].

The results showed that the projection method performed as well or

better than the SVD for low additiv e noise levels, However, for high noise

levels , the subjective appearance of the SVD restored images was slightly

better than the projection results.

The main difficulty with the SVD is the generation and storage of the

eigenvectors and eigenva l ues, Even for the small 8x8 image, the eigenvector

matrix is 64x 64. For large images the difficulties will be more pronouned .

The storage requirements for the projection algorithm depend more on the

extent of the degradation. The requirement is modest for small l ocalized

degradations.

IV . Recent Results

A comparison between the projection algorithm and the SVD was also con-

ducted for a one-dimensional case, This problem was worked previously when

the projection algorithm was compared with the least—squares filter. In

order to easily imp l ement the SVD , the problem was reduced in size.

•1 
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The origina l signal (Fig. I) consists of two rectangular pulses of unit

magnitude. The discretized pulses have five points each, separated by two

zero points. The degradation is effected in the Fourier Transform domain.

The Discrete Fourier Transform (DFT) of the signal Is obtained by a Fast

Fourier Transform routine. A triangular low—pass filtering operation (with

cutoff frequency equa l to .11 times the max i mum frequency) yields the degraded

signa l (Fig. 2). Note that in the equation g = (H] f, M= 64 and N= 116 be-

cause the va l ues at the edges of the degraded signal are in part determined

by va l ues beyond the edges. So there are more unknowns than equations.

The additive noise was Gaussian with standard deviation a. Two va l ues

of a were used in the study. The va l ue a O.05 yields a signal—to-noise

ratio of 20 log 10 
—

~

-

~~~
= 26dB. The degraded signal plus noise is shown In

Fig. 3. The projection method results are given in Fig. Ca, b, c,. The

va l ues of the signa l were restricted to positive values after each iteration .

The results without this constraint were alm.st as good. The pulses are

clearly resolved into two peaks after 30 iterations, No significant improve-

ment occurred after this point.

The SVD results for a = 0.05 are given in Fig. 5a, b, c, d, e. The best

restoration occurs after 15 terms. The projection algorithm gives clearly

superior results for this case.

The amount of noise was increased to a = 0.075, a signal—to—no i se ratio

of 20 log 10 075 22.5dB. The degraded signal plus noise is shown In

Fig. 6. The projection results are given in Fig. 7a, b, c. It should be

noted that the degraded signal plus noise was always chosen to be the initial

guess solution in the Iterative process. The SVD restoration is presented

in Fig, 8a, b, c, d. The projection algorithm results are even more clearly

superior for this case.
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The one—dimensional study shows that the projection algorithm yields

better results than the SVD In this case. It is not certain why the SVD

seems to perform better In the two—d imensional case. One reason might be

that the SVD restorations are much smoother. The projection method does a

better job of resolving two pulses , but In a two—d Imensiona l Image, the re-

storation is less smoothly varying in nature. Consequently, the SVD results

are more pleasing to the eye.

The time required to generate and store the elgenvectors and elgenva l ues

on magnetic tape was 146 secs. More time Is needed to read this data from

the tape. If all the needed values are in the centra l memory, however, the

SVD will calculate the restorati.n faster than the projection algorithm ,

The SVD uses .007 secs. to calculate one term. So 15 terms requires .lO5 secs.

The projecti on algorithm takes 0.21 secs. per iteration , which is 6,3 secs.

for 30 IteratIons.

V. Future Work

There are severa l studies which can be conducted on the projection algo-

rithm. The method is now being applied to actual satellite data, For this

data, it is necessary to interpolate between the picture elements to achieve

restoration . With the projection method , it Is hoped that the improvement

in resolution will be help ful in l ocating edges and thus Increase the

accuracy of area measurements. If the data is to be used in a classification

experiment , the method may Increase the accuracy of classification .

Further studies will include: the effect of no i se on the convergence

of the method, the effect of errors In the matrix [H], efficient storage of

the elements of (H], analysis of the case of inconsistent equations , theo—

retica l justification of the positivity constraint , and the performance of

the method for more complex types of deg radation .
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FOURIER DESCRIPTORS FOR EXTRACTION OF SHAPE INFORMAT I ON

1, Wallace and P.A. Wintz

FOURIER DESCRIPTORS

The Fourier descriptor (FD) is one method of describing the shape of a

closed , planar figure. Given a figure in the complex plane , the contour can

be traced , yielding a (one—dimensional) complex function of time. If the con-

tour is traced repeatedly, the per iodic function which results can be express-

ed in a Fourier series. Granlund [I] defines the FD of a contour as the

coefficients of this Fourier series.

To Implement this method of shape description , it is necessary to sample

the contour at a finIte number of points. Since the discrete Fourier trans-

form of a sequence gives us the va l ues of the Fourier series coefficients of

the sequence, assuming it to be periodic , using an FFT algorithm satisfies

the definition above. The computational advantages of the FFT are well known.

Once the Fourier descriptor has been computed, the operations of rotation ,

scaling, and moving the starting point are easIly Implemented In the frequency

domain by simple arithmetic on the frequency domain coefficients. While shapes

may be compared In the space domain , the procedures required to adjust their

size and orientation are computat lonally very expensive. Normally an ite rative

type of algorithm is employed , which searches for an optimum match between the

unknown shape and the test set.

This Fourier descriptor algorithm normalizes the size and orientation of

a shape before any comparisons to test shapes are made. The classification

process becomes a simple clustering prob l em with no iterative searches to con-

tend with.

Granlund’ s approach to shape information extraction involves defining

“Fourier descriptors ” by considering products of Fourier series coefficients
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which are shown to be I nvariant to position , s i ze, orientation , and starting

point factors. This results in an Increase in data dimensiona lity from N to

N2/2, without any change in tota l Information . (Since the FFT is a reversible

linear transformation , all the shape Info rma ti on is con ta i ned in the ori ginal

N coefficients.) Our approach is to work with the original FFT output vector,

normalizing It to a standard position , size , orien tation , and starting point ,

so that classification algorithms become more efficient. The classification

p rob l em becomes more amenab l e to theore t i cal ana l y s i s, as well.

NORMALIZAT I ON

The frequency domain operations which affect the position , siz e, orientation ,

and starting point of the contour follow directly from properties of the DFT.

To change the position of a contour , just vary the zero frequency (DC) coeff I—

cient of the FD, Adding a complex constan t to every point in the time domain

representation of a contour is equivalent to adding that va l ue to the DC term

of the OFT.

- • To change the siz e of the contour , the components of the FD are simply

multiplied by a constant. Due to linearity, the inverse transfo rm w i l l  have

its coordinates multiplied by the same constant.

To rotate the contour in the time domain simply requires multi plying each

coordina te by e~
0 where 0 is the angle of rotation . Aga i n by lineari ty, the

constant e~
0 has the same effect when the frequency domain coefficients are

multiplied by it,

To see how the contour starting point can be moved in the frequency domain ,

recall the time shifting property of the DFT. Shi fting the starting point of

the contour In the time domain corresponds to multiplying the ith frequency

coefficient In the frequency domaIn by e~
’T , where T Is the fraction of a

period through wh i ch the starting point is shifted. (AS T goes from 0 to 2it,
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the starting point traverses the whole contour once.)

Given the FD of an arbitrary contour , the normalization procedure requires

performing the normalization operations such that the contour has a standard

size , or ien ta t ion , and starting point. The following method of FD normalization

preserves all of the shape Information while rejectIng noise effectively. In

order to reject noise , the coefficients used In the procedure are chosen to

— have as large magnitudes as possible.

First , we require the phases of the two largest coefficients to be zero.

A(l) will always be the largest , with magnitude un i ty due to the scale normal—

izatlon procedure wh i ch defines that magnitude. Let the second largest coeffi-

cien t be A(k). (The frequencies of the coefficients produced by an FFT of

len gth n range from —(n/2) +1 to (n/2)), The normalization multiplicIty m of

coefficIent A(k) is defined as:

m = Ik— l I
THM : The requirement that A(l) and A(k) have zero phase angle can be satisfied

p 
by m different orientation/starting point combinations.

PROOF: Use the two allowabl e operations to arrive at one orien tation and start-

ing point which gives zero phase for A(l) and A(k). Next use the starting point

movement operation (multiplication of the ith coefficient by e~
’1) to move the

- 
- starting point once around the entire contour, To accomplish this I must range

4 from 0 to 271, Now consider the two cases k positive and k negative , If k is

posi t ive , the phases of A(l) and A(k) will coincide at k— I different starting

points. But at each of these startin g points , we can use the orientation

operation (multiplica tion of each coefficien t by e~
0) to reduce the phases to

zero, Similarly , if k i s  nega t ive , the phases of A(l) and A(k) will coincide

at 1—k different starting points . Again , the orienta t ion opera t ion ca n reduce

the phases to zero.
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Note that if k 2 , the orientation and starting point are defined unique l y.

In general , however, A(2) will not be the second largest coefficient in magn i-

tude so this amb i gu i ty must be resolved to achieve a general procedure.

The obvious method of solving this prob l em is to check the phase of a

third coefficien t A(p) at each of the m possible orientation/starting point

combina t ions and choose the normal iza t ion wh ich gives a phase closes t to zero

for this coefficient . However, this amb i guity—resolving coeffici ent canno t be

- 
- chosen arb i trarily. If the normalization multiplicity of coefficien t A(p) is

- - the same as that of A(k), or a mul tip le of it, the phase of A(p) will be the

same at each possible normalization ! If m for coefficient A(p) (denoted m[p])

is a factor of m[k], or a multiple of a factor of m[k] less than m[k], there

is also ambiguity since some of the m possible normalizations will result in

i dentica l phases for A(p). If these amb iguous coeff icie nt s are removed from

conside ration , and the unambiguous coefficien t with the largest magnitude is

used to select one of the m allowable normalization s, a general p rocedu re is

obtained.

To breifly review the entire normalization p rocedure, we start by divid-

ing each coefficient by the magnitude of A(I) to normalize the size of the

contour. We find the coefficient of second largest magnitude and compute Its

normalization multiplicity. We then locate the third largest coefficient suit

able for resolvin g the ambiguity (A(p)) as explained above, The orie nt a t ion

and starting point are adjusted to satisf y the restrictions that A(l) and A(k)

are rea l and posi tive , and A(p) has phase as close to zero as possible .

Th i s method is qui te powerf ul, but a s l igh t modifica t ion in the p rocedure

has been found helpful In those cases in which there are two or more coefficients

suitable for use as A(p) with almost the same magnitude. It is very unlikely

that the magnitudes will be identica l , but if they ar e even close , no i se may
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cause one of them to be used to normalize the test FD, and the other to

normalize the unknown FD. To overcome this , the ambIguity resolving coefficient

used to normalize the test FD can be supplied to the normalization subroutine

direc t ly, rather than having the subroutine compute It.

PRACTICAL CONS IDERATIONS

Theoretically, the procedure Invo l ves an exact representation of a contour

which is sampled at un i form spacing . WhIle nonunifo rm spacing can result in a

frequency domain representation which converges faster, there are obviously

great difficulties invo lved in attempting to define a standard sampling

strategy using non—un i form spacing .

Rememberin g that the FFT algorithm requires an Input vector whose length

- - is a power of 2, it is clear that the length of an arbitrary chain code repre-

sentation must be adjusted before the FF1 can be used. The obvious procedure

for doi ng this is to compute the perimeter of the contour, d i v i d e  it by the

desired len gth (desired power of 2), and starting at one poi nt , t race around

the contour saving the coordInates of appropriately spaced poInts. The desired

power of 2 might be the smallest power of 2 larger than the length of the

chain code.

Prac t ical ly, the input to the shape analysis algorithm will be a contour

taken from a sampled p icture. The perimeter of this contour will be a chain

code approxima tion to the actua l perimeter of the contour, WhIle i t can be

argued that for hi gh enough sampling density in the original picture , the

chain code is an arb i trarily good approximation to the contour , this argument

breaks down if you consider the density of points around the approx i mate con-

tour versus the exact contour.

Conside r an equilateral right triangle oriented so that the legs line up

w it h the x and y axes , w i t h  the hy potenuse a t 45 degrees. The “length” of the
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contour , if an ordinary four nei ghbor chain code is used , wi l l  be four t imes

the length of one leg ; the hypotenuse will be as long as both legs combined !

Obviously the densi ty of points on the hypotenuse will depart from the proper

val ue by a factor of v1 • This error will cause the normalized FourIer

descri ptors (NFD’s) of si mple figures such as triangles to diffe r substantially,

and render the algorithm virtually useless.

One solution to this problem Is to use an eight neighbor chain code, in

wh i ch the four diagonal neighbors of a point can also be the next point in the

cha i n, In the example jus t considered , this eli minates the point density error.

Of cou rse , for different orientations , there wi l l  still be a cer tai n amount of

error due to the chain code approximation , but this is reduced from a maximum

of about 40% to a maximum of about 8%. Experimenta l results using the eight

neighbor cha i n code confirm that this error is tolerable . If a picture Is con-

toured using a four neighbor chain code and it is desired to process the contours

using the FD method, the four chain codes can be easily converted to approximate

ei ght chain codes wh i ch are suitable for analysis.

P CLASSIFiCATION METHODS

Given two NFDs , how do we measure their degree of similarity ? An appropri—

ate classification method is essential if we are to compare unknown shapes to a

test set.

Consider two sampled contours a(i) and b(i), and defin e the difference c(i)

- ,j = a(i) — b( i ) .  Ev i den tly if a(i) and b(I) are i dentical , c(i) is iden tically

zero 0 If a(i) and b(l) are not identica l , the magn i tudes of the c(I) coefficients

are a reasonable measure of the difference between a(I) and b(i). Now consider

the frequency domain vectors corresponding to a(i), b(i), and c(i), denoted

A(i), B(l), and C(i)0 Due to l i nearity , we have C(i) A(i) — B(i)~ Applyin g

Parseval’ s theorem to the difference vector , we have
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E c (I) = 

~ 
Z C (I)

i=O i=O

N-l 2 1 N—l
~ (a(i) — b( l) )  = -~~~ ~ (A(i) B(l)

2

i—O i=O

In other words, the sum of the squares of the differences of the rea l

and imaginary parts of each coefficient of two FDs is proportional to their

point by point mean square error in the space domain. The mean square distance

measure in the frequency domain Is seen to correspond to a reasonable time

domain criterion wh i ch wei ghts each point equally. In recognizing a contour

corrupted by such factors as quantization error or poor photographic resolu-

tion , such a criterion seems appropriate . The effectiveness of this classifi—

cation method is demonstrated by the experiments described be low.

The only othe r classification algorithm Investi ga ted used an absol ute

val ue of the difference between the real and imaginary parts of each FD co—

efficient. Wh ile the exact time domain equiva lent of this operation is mathe-

matically intractable , a few qualitative observations can be made. The abso-

lute va l ue criterion is more tolerant of a large difference involvin g a single

component or two than is the mean square criterion. The coefficients with the

greatest expected magnitudes are those of lowest frequency. If one of these

coefficients is changed , the effect s generally to distort the contour glob

al ly,  such as stretching it out in one direction . Hence, th i s d i s tance meas ure

mi ght be useful In identif yin g contours which are very similar In smaller de—

tai l , bu t whose point by point difference ~!ght be substantial , It is possible

that this may correspond to similarity as defined by human observers more

closely than does the mean square distance. We would not expect, however,

that this method would be as effective as the mean square method for matching
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a test contou r to a representation of that exact contour corrupted by quanti—

zatlon noi se or poor resolution.

Since the closed contour is a continuous function , the Fourier series

- 
converges fairly rapidly, as would be expected. Most of the M.S. distance be—

tween two FDs is due to relatively few coefficients , and the class i fica t ions

reported below use no more than 32 coefficIents.

FD - CONTOU R RELAT IONSHIPS

if a FD consists of coefficient A(l) only, with all other coefficients

- 
- 

zero, It will transform back to the time domain as a sampled circle, Higher

frequency coefficients also transform back as sampled circles , but they trans—

verse the circle a number of times, A(k) wIll yield a time domain sequence

which traces a sampled circle k times in the counterclockwise direction . A(k)

and A(—k) together yield a sampled ellipse , in a manner analagous to the el-

liptica l polarization of electromagnetic theory.

Due to linearity, a contour in the time domain consists of a sum of the

inverse transforms of Its FD coefficients. Hence this view of each FD co-

efficient as a sampled “phasor” yields insight into the relationsh i ps between

a contour and Its FD. A(l) Is the fundamental frequency coefficient which Is

always the largest in magnitude , and is forced to have magnitude unity by the

magn i tude normalization procedure. It Is of interest to describe the figures

generated by A (l) and A(k) comb ined, wi th all other coefficients zero, since

of ten most of the “energy” of a FD is contai ned in as few as two coefficients.

Interestingly enough , the “normalization multiplicity ” m defined above p lays

a part here, with the contour resulting from nonzero A(l) and A(k) having

m [k]—fo)d rotational symmetry. Gran l und observed that contours with k—fold

• rotational symetry consist of components whose frequencies are mult iples of

k—l . ’ If k is negative , the contours are similar to polygons, and If k is

136

‘ 5 - -~

~~~~~~~~~ 
~~~~~~~~~~~~~~~~ L~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ - -  - - ~~~~~~~~~~~~~~~~~~~ 

. - _ _ _ _ _ _



positive, the contours generally are quite round , and appear to be loops

superimposed on a circle. If k=—l , the contour Is of course a sampled ellipse.

Most contours of interest taken from actual photographic data have a negative

frequency coefficien t as the second largest In magnitude.

FIgure 1 shows four contours whose FDs have only two nonzero coefficients.

The magnitudes of two coefficients completely determine the shape of the

fi gu re genera ted, wi th the phases only affecting orientation and starting

point. Note also that the un i form sampling condition in the time domain is

not sat isfi ed when any arbi t rary FD Is Inverse transformed,

Consider now a bilaterally symmetric contour in the time domain.

THM: A Fourier DescrIptor represents a bilaterally symmetric contour 1ff the

rotation and starting point shift operations can be performed such that the

i maginary part of each FD coefficien t (except A(O)) Is zero.

PROOF:

only if

Assume a sampled contour a(i) has bilatera l symmetry. Since transla t ions do

not affect the shape of the contour , wi thout loss of generality, we can move

the contour to the origin so that coefficient A(O) = 0. Perform the rota t ion

and starting point operations so that

a) the starting point is on the axis of symmetry

(two points will satisfy this)

b) the starting point is on the real axIs

The rea l axis now coincides wi th the axis of symmetry of the contour. Since

the vectors of the OFT matrix are linearly I ndependen t, no linea r combina ti on

of other coefficients can cance l the effect of a given coeffIcIent, Hence

the success i ve app roxi ma t io ns to the ori g ina l  con tour obtained by add in g i n

the FD coefficients one at a time must all have bilateral symmetry , and their
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axes of symmetry must be the real axis. Consider first the partial contour

consisting of the Inverse DFT of A(1) only. In order for the starting point

of this partial contour to be on the real axis , A(i) must be real , since the

- 
- first point of the inverse OFT of a sequence Is merely the sum of all of the

terms in the sequence. Now consIder the nth approx imation to the given con-

tour. Assume that these n coefficients are real. Adding the (n+l )th co—

efficient must keep the sum of n+l coefficients real , so the (n+l)th coefficient

must be real. By Induction , all the FD coefficients must be real.

if

Now assume that a FD is given consisting of only real coefficients. Let

A(O) = 0. Consider again the sequence of successive approximations to the

time domain contour obtained by add i ng one FD coefficient at a tIme. The a(I)

resulting from A(l) alone ev i dently have bilatera l symmetry, with one axis

of symmetry coincidin g with the rea l axis. Now consider adding an arb i trary

A(k) to A(l) and inverse transforming this vector of two nonzero coefficients .
p 

In order for this contour to have bilatera l symmetry about the real axis , we

require a(I) = a(—l) *. (* denotes complex conjugation) (recall that both

the aO) and A (i) sequences are periodic) from the definition of the IDFT,

a (I) = 
~~~
. [ A(l) ehi 2hh/N+ A(k) eij2~~

#’N 
]

= [ A(l) e~~~
2
~~~ + A(k) e j271k

~~]

where N Is the length of the OFT. Since the A(I) are rea l , these quantities

are eviden tly complex conjugates, so the partial contour has the desired

symmetry. Now adding each addl -tional coefficien t will add a component to the

contour which possesses this symmetry. Hence the contour is bilaterally
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symmetric , and In fact the axis of symetry Is the real axis , and the start-

ing point Is on the axis of symmetry.

AIRCRAFT RECOGNITION

This method of extracting shape information was experimentally tested on

20 airplane sIlhouettes wh i ch were digitized to two different resolutions.

The hi gh resolution versions were quite accurate representations of the air-

craf t, while the low resolution versions showed significant distortion of

some of the smaller features such as engines . Using the high resolution con—

tours as a test set, an attempt was made to classi f y the low resolution con—

tours using this FD algorithm. Using a mean square distance measure, 95%

classifica tion accuracy was atta i ned, The aircraft were of four differen t

types. Fi gures 2 and 3 show high and low resolution contours representing

each type , Figure 4 shows the magnitudes of the NFDs computed from the high

resol ution contours.

The aircra ft outlines are approximately bilaterally symmetric , although

quan tizat ion error prevents them from being exactly symmetric. The normali-

zation procedure always will yield a NFD whose i nverse transform has starting

point on the rea l axis , and whose axis of symmetry coincides w i th the rea l

axis , given the FD of a bi la terall y symetric contour. Which of the two

poin ts at wh i ch the axis of symmetry intersects the contour will actually be

the starting point depends on the ambiguity—resolving procedure described

above, The proced ure generally favors the poin t furthest from the origin of

the complex plane , but supplying a selected amb i~’uIty—reso 1ving coefficient

to the normalization subroutine can reverse this. In case both possible

s tar t ing poin ts are app roxima te ly equidis tant from the ori g in, the starting

poin t resulting from normalization Is somewhat unpredictable. This is the

si tuation in wh i ch it is advisable to check that the unknown FD Is normalized
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using the same amb i guity—resolving coefficien t as the test FD.

Since the actual experimental contours i nvestigated were not perfectly

bila terally symmetric , the normalization subroutine did not always result In

a starting point wh i ch falls on the best estimate of the axis of symmetry .

However, since the algorithm was written to reject noise , the starting point

was always quite close to the axis of symmetry.

THE BLOB ALGORITHM

The goal of this research is to extract shape Information from actua l

photographic data. In order to obtain a chain code contour with which to

apply the Fourier Descriptor classification technique , we must first ob tain

that contour from the original data. Present work in this area centers around

the BLOB algorithm of Gupta and Wintz [2], [3]. The original BLOB prog ram

merged statistically similar pixels row by row, which is advantageous for

processi ng pu rposes , bu t has the disadvantage of creating artificial contours

in the vertica l direction . Gupta and Wintz suggest that the contour tracing

algorithm of Wi lkins and Wintz (4) could be used to eliminate this prob l em.

This “contour— tracing BLOB” is the version that we are presently worki ng with ,

and all references to “BLOB” below refer to this vers ion. The false contour

problem has been eli m inated, and the output of the program consists of initial

poin t locations and grey levels , alon g with chain code directionals wh i ch are

easily interfaced to the Fourier Descriptor programs .

~~r problem In interfacing the BLOB directionals to the FD programs In

vol ves the fact that BLOB outputs 4—neighbor chain codes. A subroutine wh i ch

converts these 4—codes to approx i mate 8-codes by simply removing all right

angles and replacing them with the appropriate diagonal has been successfull y

used to overcome this, it might be preferable to rewrite BLOB to find 8—code

contours direc tly, but it is felt that the classification Improvement would
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be small , and the computation time for BLOB would approximately double.

Another problem in analyzing BLOB output using the FD method concerns

“dead ends”. The contour tracing algorithm occasionall y finds a narrow

channel which Is statistically similar to the presen t contour , but which ends

in a dead end. When this happens , BLOB retraces Its path back to the original

area, and continues to construct the contour. This “dead end” path has a

major effect on the FD of the contour , but it is probably not part of the maIn

shape we are looking for. Hence these “dead ends” are removed by another sub-

routine before the FDs are computed .

The original BLOB program was used to process multispec tra l data , wh i ch

was assumed dis trIbuted normally, The approach used was to first estimate the

variance , wh i ch is dis tributed with the f—distribu tion , and then to estimate

the mean, wh ich has the s tudent ’s t distribution , In testing a r’ew pixel

group for possible inclus i on Into a “BLOB”, the f—test tested for similarity

of varia nces , and then the t—test made use of the variance information and

tested for similarity of mean.

The norma l assumption is quite successful in dealing with multispectra l

data , but it Is ineffective in describing ordinary photograph~c data. The

problem i mmediately encountered was failure to locate objects of low variance.

If a region of a photograph is of almost constant grey leve l , the estimated

variance will be very small . Since the mean test invo l ves a set number of

standard deviation s, the total range of means allowed to pass the mean test

could be prohibitively small. Our present solution to this prob l em Invo l ves

assuming that we have apriori info rmation that the variance Is at least some

minimum va l ue. This prevents the program from ever estImating a variance to

be zero, for example , and consequentl y breaking up a region of virtuall y con-

stant grey Ievei .
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Figure 5 is an aerial photograph containing two airplanes. A reference

contour for the aircraft shown was computed by simple threshold lng techniques

using the same data (Figure 7). (Recall that BLOB considers two by two

pixels , and thus has only half the resolution wh i ch can be achieved from the

original data) The BLOB program was run on the picture shown, and the output

was analyzed by the FD program. Considering all contours of length 50 to

1021+ , the aircraft were successfully identIfied , using only shape information ,

If all the contours traced by BLOB and tested by the FD prog ram were shown,

they would virtually fill up the picture . Fi gure 6 shows only the contours

wh i ch were classified as planes by the FD program . While size, average g rey

level , orien tation , and pos i tion Information was reported by the program , none

of this i nformation was used In the classification process. Figure 8 shows

the output from the FD prog ram run on the picture of Figure 5.
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Fi g. 1 Inverse Transforms of FD’ s Consisting
of Sel ected Coefficients -

Upper Left I
-

- A ( l )  = 1.0
.4(4) = 0.2

Uppe r Ri ght I

A (l) = 1.0
A (—2) = 0.2

Lower Left
A( l )  = 1.0
A (7) = 0.2

Lowe r R i gh t p
A ( l)  = 1.0
A (— 5 ) = 0.2
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- Classi fication Results

Minimum length con tour is 50
Maximum length con tour is 1024

Classification Threshold is 0,10

Contour at 49 23 with mean 252.52
is classified as an airplane——distance is 0.0470
The picture contour is 12.1 1+ times larger than standard size
The picture contour is rotated —1 ,16 rad i ans.
The starting point is moved —3.11 radians.

- - Contour at 195 85 with mean 251.70
is classified as an airplane——distance is 0.01+03
The picture contour is 12.29 times large r than standard size
The picture contour is rotated —1. 38 radians.
The starting point is moved —3.04 radians .

Fig, 8
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FILTERING TO REMOVE CLOUD COVER IN SATELLITE IMAGERY
0, R. Mitchel l and E. J. Delp

I. I NTRODUCT I ON

Satellite multIspectral scans of the earth’s surface such as those ob—

tam ed from LANDSAT are often corrupted by cloud formations. The usual re-

action Is to discard these Images as useless. However, In some situations ,

the data of interest is temporary and a clear scan of the area cannot be ob-

tai ned. The question arises as to whether It is possible to filter out the

cloud cover thus exposing the earth’s surface below the clouds.

In order to investigate the potential of such a technique , a model of

the cloud distortion process has been developed. The “noise” effects of the

cloud are not a stric tly additive or multiplicative process but a combination .

Assuming the cloud cover Is light enough so that some of the energy from the

earth’s surface passes through the cloud (In at least one spectra l channel) a

transformation can be developed which makes the signal and noise additive .

The.~ optimum linea r filtering techniques can be applied to separate the slg—

nal and noise. An appropriate i nverse transformation then returns the fil-

tered signal to the picture domain,

To apply this filtering technique an estimate of the signal or the noise

statistics must be made. This is done by assuming the cloudy regions are

generally brighter than the non—cloudy areas and that the clouds have rela—

tively low spatial frequency content compared to the ground reflectance.

Thresholds are set in both the picture and spatial frequency domains to allow

an estimate of the noise statistics from the original cloudy Image.

II. CLOUD DI STORTION MODEL AND FILTERING PROCEDURE

Assume that an image of the earth is produced when a light cloud cover

exists over the reg i on of interest as shown In FIg. 1. If we assume that the
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cloud reflection of sunligh t plus the cloud transmission equals one (i gnor in g
diffus ion) and that the sun illuminat ion is approximately constant on the

earth’s surface, then the recei ved image at the scanner is

s(x,y) = a L r(x,y)t(x,y) + L (l — t(x,y)] < L 
- 

(1)

where r(x,y) Is the image of interest and t(x,y) Is due to the clouds. The

values of r(x,y), t(x,y), and “a” (sunlight attenuation) range between 0 and 1.

A transformation Is now performed by subtracting s(x,y) from L and taking

the logarithm:

log(L—s (x,y)]  = log[t(x,y)] + log(L—aLr(x ,y)] (2)

-
~ It the signa l is now assumed to be log (L - -aLr(x ,y)] and the noise is assumed

to be log(t(x,y)j, then the signal and noise are additive and uncorrelated.

Weiner linear filtering techniques can now be used to remove the noise [1,2].

This method of convert i ng a multiplicative process to an additive one

and then applying linear filtering has been generalized and named homomorphic

filtering [3]. In this case both mult plied terms (reflectance and trans-

mission) are real and nonnegative so that the simple logarithm is an effective

transform.

In order to follow the procedure outlined above, the sun illuminatIon L

must be estimated from the cloudy picture. Since a, r(x ,y), and t(x,y) are

- - all between 0 and I , the max i mum va l ue of s(x,y) cannot be greater than L

(3cc Eq. I). If the cloud transmission at any point is zero, the value of

s(x,y) at that point will be L. Therefore a reasonable va l ue for L In a large

set of consistent data is the brightes t point present. To prevent computation

problems deriving from the logarithm of zero, the va l ue of L Is set to one

Integer larger than the brightest point present. The original data Is then

processed by subt racting the intensity of each point from this estimate of L.
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The logarithm is then taken of the inverted data. Now the signal and noise

are additive (see Eq. 2). The filter function is

H(~i,v) —- s ~ v) 
(3)

PP ‘
where S~~~(~~,v) Is the cross power spectrum between signal and signal—plus—

noise and S~~(~ ,-u) is the power spectrum of the signal—plus—noise. The two

spatial frequency components are 1~ and v. This is a non—causal filter which

uses all the cloudy picture points to estimate each individual signal point

[1]. In order to apply this filtering, an estimate must be made of SMp (1
~
,v).

This will be discussed in Section IV,

III. EXAMPLE OF HOMOMORPHIC FILTERING

An example of the ability of this filtering technique Is now given to

show Its potential. A noisy picture is simulated using an origina l Image

r(x,y) and a noise pattern t(x,y) so that the output image s(x,y) is formed

by Eq. 1. Two—dimensional linear filtering Is performed on log (L—s(x,y)]

using known statistics of r(x,y) and t(x,y). The signa l estimate is then ob-

tained by exponentiating the filter output and i nverting the grey l evels.

The complete process is shown In Fig. 2.

- 
I Results of severa l simulations using 64x 64 pictures are shown. For

-
~ comparison purposes, the mean and standa rd deviation of the no i sy and filtered

pictures are normalized so that i~i ’  128 and a— 1 8 on a display scale of 256.

Fi gure 3(a) is a noisy signal with L= 15, r(x ,y)— 2/3 In background and 4/5

in foreground, and t(x,y) is white noise, un I formly distributed between 0.02

and 1.0. The filtered result is shown in Fig. 3(b).

Figure 4 shows another noisy picture and the filtered results with the

signa l level decreased to 23/30 in the background and 4/5 In the foreground.
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In Fig. 5(a) the same noise as used in FIg. 3(a) was low pass filte red before

it was used. The signal edges (high frequencies) are retained in the filtered

output because the noise has no components at these frequencies.

These simulation results give an idea of the maximum possible Improvement

because the model being used is exact and the noise statistics are known.

IV. ESTIMATION OF NO I SE STATI STICS IN CLOUDY PICTURES

It is possible to assume the spatial and spectral properties of clouds

can be modeled by a universal cloud model and use the statistics based on this

model in the filter. However, a more accurate method is to est1ma~e the cloud

frequency content directly from the cloudy picture. ThIs allows for wide

- 
- 

variation in the type of clouds which can be removed. The basic assumptions

made are that the clouds contain only low spatial frequencies and are located

in the picture domain only where the intensity is above the normal recei ved

ground reflect ion.

Based on histogram data of cloudy and clear i magery, a threshold l evel

for each spectra l channe l was selected which represented typ ical ground l evel

reflections. Only points above this threshold l evel were considered as po-

tential cloud points. These threshold settings were consistent across spec-

tra l channels so that approximately the same percentage of points In each

- - channel were above threshold In a cloudy Image.I _
~-4 .The first approximation for cloud transmission in a part icular Image Is

t(x,y) - C-s(x,y) (4)
L-G

where I Is the sun il lumination estimate described earlier and G is the typ i-

cal ground reflect i on (a L r(x,y)] estimate. The transmission estimate Is

bounded by I and 1. Values falling outside this range are set to the
L — G
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respective limits above. A transmission val ue of 1 Is the theoretica l maxi-

mum and although 0 is the theoretical minimum , computational problems occur

with the logarithm operation if this Is allowed.

The two—dimensional Fast Fourier Transform (4 ,5] of the logarithm of

t(x,y) Is then used to estimate the spatial frequency content of the clouds.

The square of the magnitude of the transformed points represents the power

spectral dens i ty of the noise components. However the high frequency parts

of this power spectrum are removed using an Ideal circularly—symetric low

pass filter of radius 9 cycles per picture width. This filter is used because

our low frequency assumption about clouds implies that high frequency compo—

nents, even though associated with high I ntensity picture points are more

lIkely due to ground reflectance (concrete roads, etc.) than due to the noise

(clouds). The resulting filtered version of the power spectrum is used as the

actua l noi se power spectral estimate , SNN (1i ,v).

There are other possible methods of estimating the noise statistics which

presently seem less promising. One method Is to quantify the presence of

clouds in the multispectra l image using the LARS classifier [6]. This clas-

sifier processes multispectra l data one point at a time classifying unknown

data using training statistics developed from pre—classified data. Training

classes can be chosen to include different percentage cloud cover.

Another method would measure statistics of clouds over water or some other

essentially constant ground reflectance. In this case Eq. 2 reduces to

log(L—s(x ,y)] log(t(x,y)] + K (5)

where K is a constant, and the power spect rum obtained is that of the noise

except for the d.c. (0,0) frequency point.
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This power spectrum should be circularly syffufletric since clouds have no

preferred orientation. It shouud consist mainly of low spatial frequency com-

ponents since cloud s are relatively large and smooth functions compared to

ground reflectance. Some care must be taken to normalIze the power spectrum

so that M (~,v) remains positive.

V. TWO—DIMENS I ONAL WIENER FILTERING

Once the noi se statistics are estimated , the Wiener filter of Eq. 3 can

be Implemented (see Fig. 2). The noise and signal are additive and can be

assumed to be independent. However both signal and noi se have nonzero means

and these must be accounted for in the filter. If we assume the signa l (M)

and noise (N) are uncorrelated two-dimensional stationary random processes ,

the cross—correlation between the signal (M) and signal—plus—noise (P) Is

RMP(txPty) — E{M(x+r
~~

Y+r
~
)(M(x

~
Y) + N(x,y)]} (6)

— RMM(t ,t )  + 0M~N

where and 
~N 

are the means of the signal and noise, respectively. The

corresponding cross power spectrum is found from the two—dimension Fourier

transform:

SMP(u,v) — S~~(p,v) + rIMnN 
6(~,v) (8)

where 5(~,v) is the two—dimensional direct del ta funct ion (4]. Similarly the

spectral density

SMM (IJ ,v) + SNN(1h1 ,v) + 2
~M~N 6(i.&,v)

Combining Eqs. 3, 8, and 9 results in the Wiener filter
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— SNN(P,V) — ii n 6(~i ,v)
H(~,v) — 

s ( 
~ 

H N (10)
PP

Using the model resulting in Eq. 2, the term Is a lways positive and is

always negative. Therefore there Is a boost at DC only and attenuation at

frequencies where there Is significan t noise power. SNN(u , v) is estimated as

described In Section IV. S~~(u ,v) Is estimated by the magnitude squared at

the 2D FFT of log(L - s(x,y)] where I is estimated as described In Section II

and s(x,y) is the original cloudy picture.

It should be mentioned that the method of deriving the noise statistics

discussed in Section IV slightly underestimates the noi se power (due to the

warping by Eq. 4). However, at some frequency points the noise estimate may

be so high that Eq. 9 Is negative, in which case, the filter function at that

point is set to zero.

The filtered image

Il(~ ,v) — H(~,v)P(~,v) (11)

is then retransformed as shown in FIg. 2 to obtain the ground reflectance

estimate aLr(x ,y). Results using this technique are shown In Fig. 6. The

upper left picture Is a 256x 256 cloud y LANDSAT image (channel 1) of the

Chicago area. The upper right picture is the filtered output using the pro—

cessing described above. The lower two pictures show results using an idea l

high pass filter on the original cloudy data and using an ideal high pass f II—

ter on log(L — s(x,y)], respectively. The last two are included for comparison

with the more accurate filtering based on the model.

Vt. THREE DIMENSIONAL FILTERIN G

The real potential in the cloud filterin g process Is In IncorporatIng

a third dimension , the spectra l channels , forming a three dimensional
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reflection r(x,y,z) and cloud transmission t(x,y,z). The linear filter thus

employed Is three dimensional , H(p,v,p) using three frequencies (two slatial

and one spectral). Although there are only four points in the spectral dimen-

sion for LANDSAT data , the method has good promise, because most clouds follow

the same response in the spectral dimension: cloud transmission Increases with

wavelength in a predictable fashion. This Implies that the cloud transmission

t(x,y) In each spectra l channel differs only by a multipl i cati ve factor so

that the noise, Iog(t(x,y)1, differs In each channel by only an additive con-

stant and the noise power spectrum in each spectral channel SNN (IJ,v) is Iden—

tical except at each zero spatial frequency point. This Implies that the

three dimensional power spectrum of the noise

13D FFT{log(t(x,y,z)]}12 — SNN (1i,v,p) (12)

should be zero for every point where both p~~O and (~,v),’ (0,0). ThIs coupled

with the low frequency assumption of cloud content Implies that the Wiener

filter operates only on points where p=O and p2+-v2 < (low pass filter rad i us)2

and on the three points M,v,p— OOl , 002, 003. Thus the effect of the trans-

formation Is to compress all cloud effects into a very small region where they

can then be filtered out.

The actua l filter estimate Is made by performi~ig a three dimensional FFT

on the noise estimate log[t(x,y,z)] and setting the appropriate regions In

the frequency domain to zero. The filtering is then performed using three

dimens i onal vers ions of Eqs. 10 and 11.

These results can be seen in Figs. 7—9. Figure 7 is all 4 spectral

channels of the original cloudy image. Figure 8 shows the results of the

three dimensiona l filtering. Figure 9 is an expanded version of the channel

origina l and filtered result. The results are encouraging In that more
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additiona l image details not present in the original cloudy image become

visible and the fi ltered output Is not significantly degraded.

V II . CONCLUSIONS

Two and three dimensional filtering of multispectral data to remove light

cloud cover Is a distinct possibi l i ty.  In computer simu lated noisy situations ,

the f iltering results are good. Additiona l LANDSAT data should be processed

to arrive at conclusive results as to the utility of such techniques. The

measurement of noise statistics might be improved by iteratively using the

estimated ground reflectance In place of the constant G In Eq. 4. The model

of cloud distortion of images needs to be refined based on the results of

filtering us i ng the simple model presented. It may be necessary to consider

convolutiona l effects of cloud cover as well as multip licative effects. The

change in multispectra l classificatio n accuracy after filtering may be a

suitable measure of the performance of such homomorphic filters .

Although this discussion has been limited to cloud effects in satellite

imagery, the techniques might be generalized to include the general case of

the removal of interferr lng reg ions between a sensor and the object of interest

as in seismic exploration.
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(b)

Figure 3 Computer Simulated Noisy Image (a) and Filtered
Result (b). Signal and Noise Follow Mode l in
Eq. 1; L= 15; r(x,y) 2/3 in Background and 14/5
in Foreground; t(x,y) is Uniforml y Distributed
Between 0.02 and 1 .0. Filtering Process is as
Shown in Figure 2.
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(a) ~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _  (b)

Figure 14 Computer Simulated Noisy Image (a) and Filtered
Result (b). Same as Figure 3 Except r(x,y)
Ranges prom 0.767 and 0.800.

-

~ 
(a)

Figure 5 Computer Simulated Noisy Image (a) and Filtered
Result (b). Same as Figure 3 Except t(x,y) is
Low Pass Filtered so tha t the Naximum Noise
Frequency is 8 Cycles/Picture Width.
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Fi gure 6 Two Dimensiona l Filtering Results . Upper
Left — Original Landsat Image, 256x256,
Channel 1 (Green); Upper Right - Output of
Filter Described in Text; Lower Left - Out-
pu t of Idea l Low Pass 2D Filter on Original;
Lower Right - Output of Ideal Low Pass 2D
Filter on log (L—s(x ,y)].

(-5--

I
-
-

FIgure 7 OrigInal Landsat Data. Upper Left — Channel
1 (Green); Upper R ght — Channel 2 (Red);
Lower Left — Channel 3 (Infrared); Lower
Right - Channel 4 (Infrared).
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Fi gure 8 Three Dimensional Filtering Results. Channels
are Arranged as in FIg. 7.

C I~~~ 

-

Figure 9 Enlarged Section of Chann~ I 1 from Figs.
7 and 8.
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FUR IMAGERY TACT ICAL TARGET DETECTION AND CLASSIFICAT ION

O.R. Mi tchell

Over the last few months , Pu rdue has begun a p rojec t in coopera t ion wi th

the Honeywell System and Research Division In Minneapolis , Minneso ta. The

goal Is to develop a second—generation real-time target cueing system for

FLIR (forward looking infra red) imagery.

Purdue ’s contributio n is feature eva l uation , fea ture s ubset selec t ion, and

an intelligent combination of simple measurements to allow fast, reliable tar-

get detection and classification . An initial discussion of this problem and

typ i cal data were given in the previous progress report (pp. 129-133).

Work now in prog ress is:

(1) Collect a reasonable data set of FLIR imagery to allow

comparison of methodo log i es and classification accuracy.

* 
(2) Compare image decomposition methods— both statistical or

syntactic.

(3) Develop and evaluate target classification methods which

use structure and texture in an intelligent manner.

(4) Develop methods to imp l ement the above algorithms in

real time .

-j
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COMPUTER FACILITY DEVELOPMENTS

A. P. Reeves

During the last year the changeover to the UNIX operating system has

- been completed . Now UNIX is the only operat i ng sys tem be ing run on the

PDP—ll/45 computer. UNIX was originally ins tal led for two ma in reasons:

Firs tly, a network vers i on of UNIX for interfacing with the ARPANET was be i ng

developed at Un i vers i ty of Illinois , This would give us a better software

in terface than the ELF system which we were then using . Secondly, even though

UNIX has been available for severa l years now, it is still probably the most

advanced operating system in common use on a minicomputer . It has a well—

planned file structure and contains features which are usually only found in

much larger computer systems. Converting to it was a major decision because

i t meant discard i ng all the considerable amount of software which had been

developed up to that time , for communicating with the ARPANET and for driving

- I the Comtal TV display.

The resea rch work has been d i v i ded between three computers : our own

PDP—l l , the I BM—36O at the Laboratory for the Application of Remote Sensing

(LARS) and the two CDC—6500 computers of the Purdue University Computing Center.

The in tent originally was to establish the PDP—ll as a very intelligent term—

i nal to the ARPANET , then the work being done on the other local computers

would be transferred to remote ARPANET computers. The initial work on the

UNIX system was to write software to control the Comtal TV display and to

read data from magnetic tapes produced by the other two computers .

We have had considerabl e problems with the ha rdware on the PDP— ll. A

capaci tor disintegrat ing in one of the magnetic tape drives also destroyed

part of the p rocessor; this resulted in the system be i ng down for about two

months. A more serious problem is the intermittent faults which have occurred
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removed. This will enable pictures and large programs to be much more con-

ven ien t l y stored off—line on disks rather than magnetic tape. Finally, the

overall capacity of the system is increased .

• Severa l mino r hardware projects are also progressing. These Include:

installation of a paper tape reader, a faster interface for the Versatek

plotte r, a fast 1 bit per pixel TV display , and a program controlled switch

box for better interactive commun i cation with the Comtal display and some

- 

- 
prog rams.

Severa l software projects have also been started. An i novat i ve scheme

for ma intai n ing compa table se ts of picture data , called PDS , is bein g imple-

mented. The initial work on P05 will be to des i gn a file header and a set

of picture formats to be used by everyone in the laborato ry. A set of user

callable system subroutines will be written to maintain and access these files.

Presently a provisional data format has been des i gned and the system sub—

routines will be made available to users within the next quarter. The next

phase of deve lopment will be to organize picture files into data structures

ut i l iz ing the f lexible , tree file structure wh i ch is the basis of the UNIX

operating system.

Some utility programs will be completed during the next quarter , these

incl ude the following: Firstly, a documenta t ion prog ra m , which w i ll enabl e

4 users to very rapidly access, on—li ne, any of the documentation wh i ch exists

for the system and the user deve loped software. Also a program has been

writ ten to assist users in documenting their own software with a standard

• format. Secondly, a g raphics package , which will enable users to draw lines ,

shapes and text onto the devices with graphics capabilities : these include

the Comtal TV display, the Versatek plotter , the Tektronix 4010 term i nal ,

- 
- 

and the line printer.

164

_________  ‘ - T
~~~~~~~~~~~~~~~~~~~~~ 2~~~~~~ 

4t
~~~: i —  —- — • - — 

‘ 
-~~~~~



— —-5—- — - ~
___ -~~~~~~~~~~~~

- -~~~~~~~~~~~ ~r - 5- 
~~~~~~~~~~~~~~~~~ 

-- —
~ - - — — --—-

on the RPO3 disk. This disk is the heart of the computer system and nothing

will run wi thout it, In the sumertime these intermittent faults would cause

one or two major system crashes a week. Severa l times these faults were due

to component failure but for the others we still do not know the cause. The

software for dumping and restoring the disk files has been considerably ex-

tended so that recovery with user files intact , from major system crashes

can be made much more quickly.

At the end of October, the POP—l i was disconnected from the ARPANET.

The role of the computer has therefore changed , to provide the local computing

facili ties for all the research projects. Fortunately, the UNIX operating

system provides an excellent foundation for an Image processing facility,

however , ccnslderabie software development Is required . For example, the main

high level language for UNIX is ‘C’ wh i ch is much better organized than

FORTRAN , However, much of the work on other computers has been done in

FORTRAN. The standa rd UNIX FORTRAN is rather rud i mentary and conversion

problems occur when transferring programs f rom the larger computer installa

tions.

During the last quarter of this year considerable new development of

the computer system has been initiated . The construct ion of a TV camera

interface has been started . This will enable us to digitize our own pictures

in many cases , rather than rely entirely on other computer Installations. We

in tend to purchase two RKI 1 disk drives for the following reasons: Firstly,

they will enable the system to run when there Is trouble with the RPO3 disk.

Curren tly the RPO3 disk is responsible for most of the problems that occur

wi th the computer system. Secondly, the efficiency of the system will be

improved , especially when transferring data from one disk file to another

is required . Thi rdly, the RKO5 cartridge disks may be quIckly loaded and
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During the next quarter we inten d to transfer some stand3rd i mage clas-

sification programs developed at LARS to the PDP—li . Thiw will be started

when the system subroutines for accessing PDS picture f lies are available.

- These programs will be especially useful to researchers who started their

work on the LARS computer.
-I

Currently we have seven time—sharing terminals which may be !lccessed by

users at any hour of the day. Also the Electrica l Engineering Department

has recently had a PDP—ll/70 installed ; this computer is running the same

- version of UNIX that is run on our PDP-11/45. The ARPA researchers have

limited access to this computer and , in emergency situations involving dif—

ficulty with our own system, they would be able to use it for program devel-

opment.
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FACIL IT IES

QTY Manufacturer Description

3 Beehive Elect. “Super-Bee” Te rminals

2 Tex. Inst. “Silent 700” Terminals

• 1 Di gi—Data Industry standard magnetic tape
system; 2, 9—track and 1 , 7-track
drives ; one each NRZI and phase—
encoded formatters/controllers

DEC Dual—drive DEC tape unit

I DEC RPO3 disk drive (40 million charac-
ters)

Fabritek 96K—word auxilIary memory system
(64K bought by ARPA , 32K by NASA)

Versatek Electrostatic matrix printer

Comta l Color picture displa y

Data Printer 132 col umn , 600 L.P.MO line printer

True-Data Punched card reader

1 Tektronix Model 4010, graphics dis play

DEC PDP—ll/45 computer system; system
includes :
32K memory
FPP— Il floating point processor
(NSF money)

H960 extension mounting cabinet
3-small periphera l mountings blocks
(DD-ll)

1 UNIBUS repeater/expander
DH 1 1, 16—line term i na l multiplexor
KWH-p programed clock
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METRIC SYSTEM

BASE UNITS:

Quantity • 
Unit SI Syn!flcI Formula

length metre rn
mass kilogram kg
time second a
electric current ampere A

- 
- thermodynamic temperature kelvin K

amount of substance mole mol
luminous intensity candela cd - - -

SUPPLEMENTARY UNITS :

plane angle radian rad - -

solid angle steradian sr

DERIVED UNITS:
Acceleration metie per second squared - -  - rn/s
activity (of a radioactive source) disintegration per second - • - (dislntegr.tlonys
angular acceleration radian per second squared • - - rad/s

angular velocity radian per second • . .  rid/a
area square metre - - - m
density kilogram per cubic metre ..• kg/rn

electric capacItance farad F A-s/V
electrical conductance Siemens S A/V
electric field strength volt per metre - - - Vim
electric inductance henry H V-s/A
electric potential difference volt V WIA
electric resistance ohm V/A
electromotive force volt V WIA
energy loule J N-rn
entropy joule per kelvin .. I/K
force newton N kg.m/s
frequency hertz Hz (cycle)/a
illuminance lux lx lmim
luminance candela per square metre . •  cd/rn
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre - • •  A/m
magnetic flux weber Wb V-a

• magnetic flux density tesla T Wblm
magnetomotive force ampere A
power watt W JIs
pressure pascal Pa N/rn
quantity of electricity coulomb C A•s
quantity of heat joule J N-rn
radiant intensity watt per steradian . .  WIir
specific heat joule per kilogram-kelvin • • .  Jlkw K
stress pasca l Pa Nlm
thermal conductivity watt per metre-kelvin - - - WIm.K
ve locity metre per second . . .  m/s

viscosity, dynamic pascal-second ... Pu’s
viscosity, kinematic square metre per second - -  - mis
voltage volt V WIA
vo lume cubic metre • . .  rn
wavenumber reciprocal metre ... (wave)Im

• 

- 
work joule I N-rn

SI PR~~~~ ES:

Multiplication Factors Prefix SI Symbel

I 000 000 000 000 = 10” t,,ra T
1 000 000 000~~ 10’ gig. (;

1 000 000 = i 0” meg. M
1 000 = lOl kilo k

100 = 10’ hecto’ h
10 = 101 doka d.

0.1 = lu—I dad ’ d
0.01 = 10’’  :entt’

000 1 = 10’~ mllli
(1.O(JO 001 = 10 ‘ mk:m

0.0(10 000 001 10 • nano U

0.000 000 000 001 1(~~” pico p
0.000 000 000 Q00 001 - In-” femtn

-~ 0 000 000 000 000 000 001 1(1 ‘~ silo

To be avoided where poasible
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MISSION
of

Rome Air Development Center

RAI~ plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C3) activities, and in the C3 areas of informatior4 sciences
and intelligence. The princi pal technical mission areas
are comj- nunications, electroma gnetic guidan ce and control ,
surveillance of groun d and aerospace objects, intelligence
data collection and handling, inf ormation system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainabilitg and •

compatibility.
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